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ABSTRACT

The evolution of wearable diagnostic devices and more importantly, increasing consumer aware-

ness, have demanded advancements in sensing mechanisms, sensor data analysis and data process-

ing. Magnetics technologies such as current sensing, actuation, switching, navigation and data

recording have all evolved technologically with the demand of lower operational power and long-

term system stability. However, none of these advancements, have incorporated operations in low

magnetic fields since these fields are non-uniform, vary spatially and provide low data resolution.

In this work, the possibility of sensor operations in low non-uniform magnetic fields is explored.

Magnetic fields produced by neodymium iron boron permanent magnets are studied, simulated and

tested with portable pulsed field generation systems to demonstrate the capability of detecting mag-

netic resonance signals in non-uniform DC magnetic fields. Advances in detection capabilities in

non-uniform fields will allow multiple new application areas to develop, potentially revolutionizing

medical diagnostic procedures.

In this dissertation, we analyze different aspects of a portable magnetic resonance sensor system

in detail. We first study magnetic fields produced by different permanent magnet geometries. The

spatial magnetic field variations in the magnet’s exterior are simulated using finite element methods.

In particular, regions of localized field uniformity in the magnet’s exterior are identified for ring

magnet geometries. Various modifications to ring magnets such as magnet dimensions, inclusion

of magnetic inserts, placement of multiple magnets and their orientations are simulated to identify

the optimal geometry with maximum magnetic flux density in locally uniform regions.

We next consider the generation of pulsed magnetic fields using portable electronic circuits.

Pulsed magnetic fields are needed to initiate the magnetic resonance process. Thus, pulsed fields

are used alongside the static fields in magnetic resonance measurements. We discuss design con-

siderations for creating portable pulsed magnetic field circuits, delivering upto 10 A of current
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at operational frequencies ranging from 2 - 5 MHz, via design of two prototype circuits. Both

these prototype devices rely on application of pulsed sinusoidals to switching devices connected to

inductors.

A combination of the static and pulsed magnetic fields constitutes the NMR sensing and de-

tection system that is used to study ferromagnetic and paramagnetic materials. We present mea-

surements from ferromagnetic materials placed in non-uniform magnetic fields with applications in

oil-well industry. We also present measurements of paramagnetic materials within organic media.

These measurements validate applicability of such portable sensor systems, thereby ushering in

varied possibilities for future portable magnetic resonance measurements in low and non-uniform

magnetic fields.
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CHAPTER 1. INTRODUCTION

Sensors and sensor systems are increasingly becoming an essential part of our daily lives, at

home, at work, at recreation, and most of us seem to have some sensing devices with us most of

the times. Sensors have thus become ubiquitous, they find applications in the simplest as well as

most complex equipments and missions around us. Many sensors are designed and used for mea-

surements of physical parameters such as distance, velocity, acceleration, force, pressure, gravity,

electric current, magnetic flux, etc., and include some common examples such as speedometers,

accelerometers, strain gauges, pressure gauges,ammeters, fluxmeters, etc. Other types of sensors

are used to detect presence of toxins in food items, to detect and measure polluants in air or even to

detect tissue anomalies for diagnostics, to monitor key vital signs of patients or in remote sensing,

etc. Depending on the sensing mechanisms employed, requirements of external stimulus for their

functioning, if any, or their areas of applicability, sensors can be described as proximity sensors that

measure distances, as strain gauges that can measure strains and stresses, as thermocouples that

measure temperatures, optical sensors that use photo-detectors , magnetic sensors which can sense

magnetic fields including magnetic precession, thin-film sensors, bio-sensors, chemical sensors, high

temperature sensors or in more advanced versions as smart sensors which in addition to sensing

can trigger other devices.

Often a collection of sensors along with additional analog or signal processing devices are as-

sembled together to form special purpose sensor systems. Sensors for detection of forces, fields and

acceleration are used in embedded and automotive systems [1, 2, 3]. Some other sensors are designed

to operate under harsh environments which may include high temperatures, elevated pressures, ex-

posure to corrosive substances and even variable fields [4, 5, 6, 7, 8]. Such systems, employed in

transportation, military hardware, security, communications, health care, medical diagnostics and

bio-medical sectors, power generation and even home automation, are capable of acquiring signals,
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digitizing and processing data and providing triggers for activation of other devices for further ac-

tions. Recent advances in data storage, data analytics together with miniaturization of electronic

systems have further propelled the use of portable sensor systems enabling significant advances in

their applications. Sensor system designs are optimized for their suitability for certain range of

applications taking into account requirements of the quality of performance, durability and also

cost whilst trying to provide solutions to address issues of health care, safety, and global envi-

ronment. There are thus continuing research and development efforts to design, improve designs,

enhance range of their applicability whilst controlling costs of the products based on incorporation

of advancing technologies, innovations and new concepts for ever increasing demands from simplest

to most complex needs in our daily lives.

In this work, special kind of magnetic sensor systems are studied. In magnetic sensor systems,

various physical properties are detected indirectly through magnetic field variations. The detection

capability of magnetic sensor systems is dependent on the range of magnetic fields being detected.

The sensitivity ranges of various magnetic field sensors, from Fig. 1.1, highlight the field detection

capabilities for most magnetic sensors. Magnetic sensor systems used to detect nuclear precession

are known as magnetic resonance sensor systems. Such sensor systems operate in the presence of

static external magnetic fields [7, 9] making the signal detection process more involved.

In the present work, studies on a portable nuclear magnetic resonance (NMR) system has been

undertaken. A simple, systematic and robust approach has been adopted to understand the existing

systems and develop a new design of a complete sensor system. The portable and cost effective

NMR unit consists on one hand relatively simple probes and on the other hand original solutions for

suitable accompanying electronics. Validation of the proof of concept device is illustrated through

measurements on representative targets available thus demonstrating an affordable, portable NMR

system for medical diagnostics operating in non-uniform magnetic fields.

In the body of this thesis work the design, development and measurements from a sensor

system which may be used in varied nuclear magnetic resonance applications will be discussed.

The design is optimized for each parameter which can affect NMR signal detection capabilities of
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Figure 1.1: Magnetic field sensitivity ranges for varied magnetic sensors [10]. Here GMN corre-

sponds to geomagnetic noise and E corresponds to Earth’s magnetic field.

the sensor system. Additionally the effect of non-uniform external static fields on the operation of

nuclear magnetic resonance sensors is examined in great detail. Furthermore the utility of magnetic

resonance sensors in non-invasive characterization and evaluation of certain representative target

materials inclusive of organic matter is explored. An approach of obtaining magnetic resonance

signals in spatially varying static magnetic field is proposed and the conditions for its successful

operation has been identified.

The key contributions of this work thus include primarily the conceptualization, design, develop-

ment, measurements, testing of different magnetic sensors and associated magnetic field generation

systems. This dissertation also includes a background review, simulations, experimental measure-

ments and analysis needed to understand the sensor system operations.

As a summary, in this chapter, the need for designing a portable magnetic resonance sensor

system operating in non-uniform magnetic fields, relevant challenges and possible avenues for fur-

ther advancement to adapt the system for low cost, portable NMR for diagnostic and analytical

applications will be reviewed.
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1.1 Research Motivation

Magnetic field sensor systems are used for numerous applications [10, 11, 12, 13]. Many magnetic

field sensors include materials which are sensitive to changes in magnetic fields or devices which

respond to such changes [14, 15]. Some sensors can operate in the presence of uniform magnetic

fields [9] while some might operate under non-uniform magnetic fields [7]. In fact, some applications

[16, 17] where non-uniform magnetic fields may be present, modify their sensor design to nullify

effects of magnetic field variations. In other applications, different techniques of pulse sequencing

[18, 19] or gradient fields [20, 21] are employed.

A question that may arise is why magnetic measurements are difficult in presence of non-

uniform magnetic fields. Besides single-sided nuclear magnetic resonance (NMR) applications [22,

23] where non-uniform magnetic fields are pre-dominantly present, field non-uniformities can cause

variations in magnetization within bulk samples: in some cases there might be localized regions

of magnetization and in some others limited regions of magnetization may occur. Nonetheless,

there are certain applications where field non-uniformity is incorporated and taken into account

during measurements [24, 25, 26]. Two well known applications are magnetic resonance imaging

(MRI) and oil-well logging. While both applications require different measurement protocols, the

presence of a uniform external static magnetic field is vital in both[18, 27]. MRI systems create

precise field non-uniformity to obtain contrast in images of human tissue [28, 29]. Meanwhile, oil

well measurements use different ways to overcome non-linear effects introduced by non-uniform

magnetic fields [23].

Since static field non-uniformity is a huge roadblock to design of portable magnetic resonance

sensor systems, exploration of new designs utilizing the magnetic field non-uniformity in magnetic

sensing applications would greatly enable utility of such sensors in practical application. With

this background, our main focus throughout this work will be on developing an understanding of

the non-uniform nature of magnetic fields generated by unilateral (or single-sided) NMR sensor

systems, determining the field perturbation (if any) introduced by objects placed in such fields

and eventually developing a prototype system that incorporates magnetic field non-uniformity
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introduced by magnets. It is our hope that these findings will contribute to improvements in

non-invasive and portable diagnostics at several medical facilities.

1.2 Magnetic resonance sensors

Magnetic resonance sensors are designed to detect energy exchanges at resonant frequencies [30,

31]. Such sensors can detect resonance at macroscopic and microscopic scales [32]. The phenomenon

of nuclear magnetic resonance (NMR), first discovered in the 1950’s, has been of considerable value

in several applications [33] particularly to the petro-chemical and medical industries. To further

understand the design of magnetic resonance based sensors, a brief background about the major

milestones in the evolution of nuclear magnetic resonance are discussed.

1.2.1 Evolution of magnetic resonance

Pioneering work by Rabi, Bloch and Purcell [34] led to the discovery that nuclei, such as 1H or

15P absorbed certain frequencies of RF energy in presence of an external magnetic field. Energy

absorption occurred when the nuclei were considered to be in a state of magnetic resonance. Fur-

thermore, the structural and chemical information about the molecule was determined [35] through

it’s signal emissions. For several years, the technique of NMR was then used for chemical spec-

troscopy and material identification. From this period until early 1970’s, different pulse sequences

were also designed, probably the most significant of these were from Hahn and Carr in the 1950’s

[36]. During this time, the oil industry was also actively engaged in using the NMR technique

to detect porous structures within ground formations, measuring relaxation and diffusion times.

Efforts were also in place to obtain NMR signals from living animals, humans and detect human

blood flow. In 1971, Damadian demonstrated that the NMR relaxation times of tissues and tu-

mors differed [37]. Eventually, Lauterbur published the first nuclear magnetic resonance image

(now recognized as an MRI) and the first cross sectional image of a live mouse and other organic

matter[38, 39].
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The technique of NMR was further extended to image the human body during the 1980’s.

GE Research established the first human body scanner using a 1.5 T external magnet system [40].

Through the 1990’s further improvements in the signal optimization and localization were achieved.

Higher field MRI machines were created to obtain higher sensitivity and improvements in spatial

resolution [41, 42, 43].

Over the last few decades, NMR and MRI have metamorphosed into integral investigation

techniques. Magnetic resonance imaging (MRI) or nuclear magnetic resonance (NMR) is being

employed to visualize the condition of the tissues and other internal organs. Many MRI systems

operate at high uniform magnetic fields (1-10 T or more) and are designed to adjust for gradients

in magnetic field. The technique allows a wide variety of radiofrequency pulse sequences which may

be used to examine different parts of the human body [44, 45], or image malignant/non-malignant

tissues [46] and detect anomalies such as tumors [47]. Medical facilities are increasingly rely on

MRI scans as diagnostic tools for neuroimaging, musculoskeletal imaging, fetal imaging, cardiac

imaging etc. [48, 49]. More recently, functional MRI (fMRI) is being used to determine brain

activity during different actions[50, 51]. However, accurate measurements including size or nature

of tumors etc. require longer measurement time and finer measurements using more elaborate

techniques [52]. In addition, NMR spectroscopy of complex chemical species, organic compounds,

proteins, nucleic acids and even DNA sequences have been obtained[53, 54]. Additionally, the oil

industry now utilizes portable, wireless and surface tools. Techniques such as logging while drilling

and in-situ detection of rock porosity are observed [55, 56].

1.2.2 Major challenges in magnetic resonance applications

With a focus on the relevant applications, magnetic resonance based imaging and spectroscopy

have both evolved into mature techniques. Furthermore, with improvements in signal acquisition

and processing several portable systems are found in the markets for non-invasive evaluation of

cement, biodegradable materials, wood, paintings, plants etc [23, 57].
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While data acquisition and signal processing capabilities have advanced rapidly, modifications

in the measurement methods have not been as rapid. In fact, most magnetic resonance experi-

ments still require the presence of a uniform homogeneous static magnetic field [18] for reliable

interpretations. Minor variations in the magnetic field strength cause peak broadening in spec-

troscopy applications and affect spatial resolution of magnetic resonance images [18]. Thereafter,

non-uniform magnetic fields haven’t been considered to be effective for use in medical applications.

However, known field gradients are applied in MRI systems to obtain greater image clarity and

resolution. Contrary to medical applications, all NMR operations in the oil industry use a non-

uniform magnetic field since the region of investigation is external to the sample. Then, is there a

possible merger between the two measurement methods i.e. can non-uniform fields be utilized for

medical applications ushering in a whole new opportunity for portable diagnostics?

Before considering possible modifications of magnetic field non-uniformity, it is vital to dis-

cuss aspects of spatial resolution and signal to noise ratio (SNR) in nuclear magnetic resonance

experiments. In conventional NMR, the strength of the externally applied static magnetic field

,B0, relates to both the spatial resolution and SNR. Additionally, the spatial resolution depends

on the magnetic field gradients, ∆B0. Thereafter, the SNR of NMR measurements is found to be

proportional to the strength and homongeneity of the field based on [58]:

SNR ∝ B0
2 ∝ 1

∆B0
(1.1)

From equation 1.1 it is seen that a high static magnetic field and low variations in the field gradient

are considered to be necessary conditions for achieving high SNR in conventional NMR measure-

ments. Ideally, device performance may be improved by changing either of these factors. The

best case may be to increase the static field strength and minimize the non-uniformity at the same

time. Other parameters such as number of nuclear spins and spin transitions, size of sensitive

region etc. also play an important role in NMR signal detection [45]. The presence of field non-

uniformity affects the SNR significantly. Thereafter alternative methods of obtaining NMR signals

in non-uniform fields are established. These are discussed in upcoming sections.
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1.2.3 Initial efforts in unilateral NMR

There are some applications where NMR may be detected in non-uniform magnetic fields with

low spatial accuracy [59, 60, 61]. Unilateral NMR is one such technique. Probably the most

extensive work in the area of unilateral (single-sided and non-uniform) NMR, single-side magnet

designs and open geometries originate in the oil well logging industry. The oil industry needed

mobile instruments that could detect rock porosity and oil/water in ground formations [23, 62]. In

the early 1950’s - 1970’s researchers at Chevron [63], Schlumberger [64], Mobil [65], Shell [66] and

other oil companies worked on designing NMR based borehole logging instrumentation, developing

an understanding of NMR measurement of fluids in rocks and relationships between NMR signal

decay times and rock pore sizes [67]. Due to large measurement depths and excessive power

consumption the oil industry did not use coils to generate static magnetic fields. Instead, permanent

magnet assemblies were utilized. Attempts were also made to use the earth’s magnetic field as

the static field. Large magnetizing coils were energized and rapidly switched off allowing the

magnetization to precess in Earth’s field [68]. These initial attempts were not very successful due

to poor sensitivity of NMR signals in the Earth’s field [67, 69].

(a) Industrial device (b) Lab device

Figure 1.2: (a) Schlumberger’s [64] initial design for NMR measurements in oil wells, (b) First

portable inhomogeneous field based system [61]



www.manaraa.com

9

Several antenna designs were also explored. Schlumberger was one of the pioneers in utilizing

ferrite loaded antennas to overcome signal-to-noise ratio limitations (Fig. 1.2a). However even

they faced challenges of magnetoacoustic ringing and used a combination of techniques to overcome

ringing [70] due to the ferrites.

A portable magnet and coil detection system are integral parts of the unilateral system. The

major findings from the oil industries explorations were the physical requirements for unilateral

NMR measurements. The requirements were [64]:

1. A region of relatively uniform static magnetic field

2. A radio frequency field perpendicular to the static field

3. Resonance condition i.e. ratio of oscillating field frequency to the static field strength be the

gyromagnetic ratio

4. Short measurement wait time

These requirements were further reinforced by NMR measurements in homongeneous magnetic

fields by the medical community. In fact the unilateral NMR sensor designs at that time were

focused on developing devices capable of generating localized regions of homongeneous magnetic

fields or “sweet spots” [71, 72]. Homogeneous fields allowed comparatively improved signal to noise

ratio (SNR), larger sensitive volumes and long lasting NMR signals and were preferred. However,

these initial techniques were best only for analyzing rocks that were a few centimeters away from

the probes.

1.2.4 Other efforts

Beyond the oil industry, open geometry sensors also started becoming popular in nondestructive

testing of materials [73], moisture detection [74, 75], medical diagnostics [76] and so on [57]. With

use of permanent magnets and surface coils, different measurement techniques emerged. The “stray-

field imaging” or STRAFI technique [77] was one such technique wherein the test samples were

moved through the sensitive imaging slice created by strong static field variations. While the
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technique is simple, use of superconducting magnets for generation of field gradients and time

consuming experiments made this technique less popular [78] among researchers.

Other methods incorporated creation of magnet assemblies that could provide homogeneous

magnetic field over larger volumes. Designs based on Halbach magnet arrays [79], radially magne-

tized discs [80], multiple concentric ring structures [81], HALO (high access low oersted) system

[82] etc.[83], were implemented and each presented different challenges such as low SNR, limitations

on detection volume and limited control of field variations.

Several designs which utilized the inhomogeneous nature of magnetic fields also emerged. The

first fully portable device, NMR MOUSE (Mobile Universal Surface Explorer) was one of the first

mobile unilateral NMR systems capable of measuring signals from the side of an object [61].

The first mobile lab device as seen in Fig. 1.2b comprised of a horse-shoe shaped magnet that

generated an inhomogeneous static magnetic field B0 and an RF surface coil that is used to generate

the RF field B1. Use of surface coils restricted the detection area to regions close to the surface of

the object. The RF coil used was a 4-layer solenoid with 8 turns per layer. The inductance was

of the order of 3 µH. From this design, a deadtime of about 10 µs was obtained. Since the fields

are inhomogeneous, single and multiecho techniques such as Hahn echo, Carr-Purcell-Meiboom-Gill

pulses and Ostroff-Waugh 4 were used to measure the NMR signal decay time [57]. The technique

developed in this work was used for detection of different polymers with a penetration depth of 5

mm.

Another design by [84] was utilizing a tailored permanent magnet array which produced flat

sensitive volumes up to 40 mm from the mobile inspection head. Automated slice selection was

conducted by using a set of switched capacitors in the tuning and receiver circuits. A single

channel spectrometer was used to drive the the multi-slice acquisition. The RF coil and magnet

array geometries were tailored to house field gradient sets to further improve the image rendering

capabilities. This work identified that the main challenge for image rendering using a single-sided

sensor is to achieve spatial resolution away from the probe head. Many other developments such
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as the NMR MOLE (Mobile Lateral Explorer) [85] and application specific devices using different

permanent magnetic geometries and arrangements emerged in this duration.

1.2.5 Non-uniform field NMR

As discussed, controlled non-uniformity in static fields is advantageous in medical imaging and

even stray-field imaging. Based on Table. 1.1, non-uniform NMR can occur in low field conditions

and can be used for portable NMR solutions.

Table 1.1: Comparison of parameters for uniform and non-uniform field NMR [86]

Parameter Uniform NMR Non-uniform NMR

B0 1 - 5 T (some upto 35 T) Upto 2 T

B1 Frequency dependent 0.0001 - 0.01 T

B0 source Superconducting magnets Permanent magnets

Operational frequency B0 dependent (Upto 340 MHz) Upto 30 MHz

Investigation depth Frequency dependent ( Upto 100 cm) Low ( 0 - 30 mm)

Spatial Resolution nm - um Low ( um - mm)

Signal to noise ratio High Low

Correspondingly several questions arise. While the first and most challenging question is still

on how one may achieve improvements in SNR and spatial resolution in non-uniform fields the

second question may be the feasibility of obtaining reliable signals in low external magnetic fields

(approximately 0.01 T). These questions demand a better understanding of the noise or background

signal due to the presence of the magnet, surrounding environment, nature of anomalies to be

detected etc. and an understanding of the measurement constraints on SNR, spatial resolution etc.

These will be addressed in some detail in Chapter 3.

1.3 Towards a portable non-uniform NMR system

Several ongoing efforts towards creating portable NMR systems exist. Many of the existing

systems are designed to be application specific. Thereafter, there is a generic need for improved

portable NMR systems that can operate well in field non-uniformity. The system proposed in this
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work incorporates the aspect of portability and brings forward possible approaches of operations

in non-uniform fields. The design considerations for the permanent magnet assembly, pulsed field

generator and measurement assembly will be described in this document. It is expected that

through this work the research community will understand the challenges and possibilities in low

non-uniform field NMR measurements.

1.4 Conclusions

The primary goal of this work was to investigate the possibility of obtaining NMR signals in non-

uniform magnetic fields. Two different application areas were considered. Initially, operations of

unilateral NMR sensors used in oil industries were investigated to obtain a perspective on potential

challenges for non-uniform field measurements. The design, operation and measurements from an

existing unilateral NMR sensor were analyzed. More specifically, the effect of different magnetic

materials used within the sensors were tested under application of a DC magnetic field bias alongside

a RF magnetic field. The unilateral sensor measurements highlighted the effects of non-uniform

magnetic fields on the test samples and led us to further investigate the relation between non-

uniform fields and NMR detection. The design of a ring magnet was evaluated for portable unilateral

NMR purposes. A pulsed magnetic field generator was designed and a commercial assembly of the

magnet and field generator were tested together to measure NMR signals in non-uniform fields.

1.5 Contributions

Through the course of this research work several aspects of unilateral NMR systems have been

examined, designed and experimented upon. Of these, the primary contributions from this work

include:

1. Methods to pre-estimate static magnetic field variations in free space for varied permanent

magnet geometries
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2. Design of pulsed field generation systems to generate low pulsed magnetic fields (upto 0.01

T)

3. Design of appropriate transmit and receive geometries (surface coils)

4. Systematic integration of different stages and sufficient testing and experimentation to vali-

date proof of concept prototype

5. Documentation of techniques, methods and considerations for future improved portable uni-

lateral NMR systems
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CHAPTER 2. OVERVIEW OF NUCLEAR MAGNETIC RESONANCE

The central theme of this work is acquisition of nuclear magnetic resonance signals from various

samples placed in non-uniform magnetic fields. This chapter is a review of the necessary back-

ground and definitions related to nuclear magnetic resonance (NMR), and associated measurement

parameters.

2.1 Basic principles of NMR

NMR is a phenomenon wherein atomic nuclei (protons and neutrons) respond to externally

applied magnetic fields. Atomic nuclei, with odd atomic numbers possess an inherent magnetic

moment (nuclear spin) that creates an intrinsic magnetic field. In the absence of external fields,

the nuclear spins are randomly oriented. When atomic nuclei experience an external magnetic

field, they reorient in the direction of the externally applied field. The nuclei align either to an

energetically favorable parallel or anti-parallel direction [18]. Additionally, the external static flux

density, B0, exerts a torque on the nuclei causing them to precess about the external field axis.

The precession occurs at a frequency, related to the applied field, known as the Larmor precession

frequency, ω0, and is given by [18]:

ω0 = γB0 (2.1)

Application of radio frequency (RF) pulses to the precessing nuclei causes energy transfer to occur

between the different energy levels occupied by the spins. Nuclei absorb RF energy that corresponds

precisely to the energy difference between available energy levels and release RF energy at the

same frequency when the RF pulse is removed. Electromagnetic radiations are emitted during this

process. The entire process of energy absorption and relaxation (energy release) occurs when the RF

energy corresponds to the energy difference between the spin states. This is termed resonance, and

since it occurs between magnetic nuclei, the phenomenon is known as nuclear magnetic resonance
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(NMR). Electrons also possess spin magnetic moments and will also precess in externally applied

magnetic fields. However, the electrons precession frequency is much higher than that of protons

(GHz’s in contrast to MHz’s) and thus require a larger static magnetic field and a high frequency

pulsed field. For example, in a static magnetic field of 1 T, the Larmor precession frequency for an

electron is 1.76×1011s−1 and for a proton is 2.67×108s−1 [87]. Thus, many NMR-based procedures

such as oil-well logging or magnetic resonance imaging (MRI) are based on proton (or hydrogen)

NMR instead of electrons like in electron spin resonance (ESR).

NMR can occur when any nucleus which has an odd number of protons or neutrons or both [88]

undergoes spin transitions from one energy level to another in externally applied magnetic fields.

NMR occurs only because the nuclei have a non-zero spin. Such nuclei possess a magnetic moment,

µ, which is affected by external magnetic fields. Mathematically, the magnetic moment is expressed

as,

µ = γJ (2.2)

Here, γ is the gyromagnetic ratio, a proportionality coefficient between the magnetic moment and

the angular momentum specific to each nucleus and J is the angular momentum. When an external

static magnetic field B0 is applied to the nucleus, the magnetic moments tend to align either with

(lower energy orientation) or against (higher energy orientation) the external field as shown in Fig.

2.1.

Figure 2.1: Possible orientations of nuclear magnetic moments (parallel/antiparallel to external

field) (adapted from [89])

In general, most of the nuclei tend to align in the lower energy orientation while some will align in

the higher energy orientation (Fig. 2.2). At the same time, the nuclei are constantly precessing along

the static magnetic field direction. Then, when an RF pulse at the nuclear precession frequency is



www.manaraa.com

16

Figure 2.2: Splitting of degenerate nuclear energy levels under an applied magnetic field (adapted

from [89])

applied, a spin flip or transition occurs between the two energy states. An exact quantum of energy

is required for this transition, as seen in Fig.2.3. For a spin 1/2 nucleus, there are only two energy

levels, the lower energy level (i.e. occupied by spins aligned with B0) and the higher energy level

(i.e. occupied by spins aligned against B0). Energy in each level is described as

E = −mh̄γB0 (2.3)

Here, m is the magnetic quantum number, h̄ = h
2π is the reduced Planck’s constant and the energy

difference between energy levels for a spin 1/2 system is

∆E = 2mh̄γB0 (2.4)

Since spin transitions occur for a collection of nuclei, on a macroscopic scale, on application of

RF pulses, the net magnetization is affected. The macroscopic magnetization, M0 is defined as the

net magnetic moment per unit volume. For N nuclei per unit volume, it is defined as [45],

M0 = N
γ2h2I(I + 1)

3(4π2)kT
B0 (2.5)

where k is Boltzmann’s constant, T is the absolute temperature in Kelvin, h is Planck’s constant

and I is the spin quantum number of the nucleus. From equation 2.5 it is observed that the



www.manaraa.com

17

Figure 2.3: Absorption of radio frequency radiation to promote a transition between available

nuclear energy levels (adapted from [89])

magnetization directly depends on the static field strength and the number of nuclei. This implies

that a higher static field and number of nuclei are desirable in most NMR measurements.

For every NMR experiment, a transition or a spin flip between the two/variable energy states

is initiated via application of a pulsed field. The energy required for such a transition is expressed

as

E = hν where ν =
γBo
2π

(2.6)

As shown in equation 2.3 the extent to which one energy state is favored over the other is

determined by the external magnetic field strength B0 and the strength of the small nuclear magnet

(i.e. proportional to the gyromagnetic ratio). RF pulses are applied for particular pulse widths

in order to initiate spin transitions and alter population ratios. The application of a pulsed field

causes the protons to precess in phase. Additionally, the pulses reorient the net magnetization

vector by specific angles. If the pulsed field B1 is applied for a time duration τ , the rotation angle

is

θ = 2πγτB1 (2.7)
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Figure 2.4: Longitudinal magnetization recovery and T1 relaxation process for a proton population

([88])

Generally, the RF pulses reorient the net magnetization by an angle of 90o (π/2 pulse). Trans-

verse magnetization components (x-y plane) offer greater measurement sensitivity to field variations.

Once the RF excitation pulse is removed, the nuclei begin to return to their thermodynamically

stable states along the DC field direction. The protons start precessing out of phase and the net

magnetization of the system decreases. The energy absorbed during the transition from the lower

energy state to the higher energy state is released, Fig. 2.6, and the decay process, termed as

“relaxation” occurs. Since two types of magnetic fields exist, the static field and the RF pulsed

field, there are two types of relaxation processes. Once the RF pulsed field is removed, the time

associated with the recovery of the magnetization along the longitudinal direction is termed as T1

or spin-lattice relaxation, Fig. 2.4.

In this process, the energy of the spin system is transferred to neighboring atoms (the lattice).

The recovery of the longitudinal magnetization, Mz, to its equilibrium value M0 is described via

equation 2.8 and the net longitudinal magnetization is described in equation 2.9. Additionally, the

decay time associated with the recovery in the transverse plane, Mxy, as in Fig. 2.5, is known as

spin-spin or T2 relaxation and is defined as the time for the magnetic resonance signal to decay
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Figure 2.5: Transverse magnetization recovery and T2 relaxation process for a proton population

([88])

to 37 % of its initial value once the magnetization has tipped into the transverse plane (equations

2.10 and 2.11).

dMz

dt
=
M0 −Mz

T1
(2.8)

Mz = M0(1− e
− t
T1 ) (2.9)

dMxy

dt
=
−Mxy

T2
(2.10)

Mxy = Mxy0e
− t
T2 (2.11)

In essence, an NMR signal is a record of the energy absorption and relaxation processes when

the applied radio frequency (RF) pulse is removed. It is generally a time varying exponential signal

which decays rapidly (tens of microseconds). In practice, a huge number of nuclei (approaching

Avogadro’s number) are placed in the magnetic field. The distribution of nuclei in the different

energy states under conditions in which the nuclear spin system is unperturbed by application of



www.manaraa.com

20

Figure 2.6: Relaxation process (adapted from[89]) occurs on application of appropriate RF pulses

any RF energy is given by the Boltzmann equation:

Nupper

Nlower
= e

−4E
kT = e

−hν
kT (2.12)

Here, Nupper and Nlower represent the number of nuclei in upper and lower energy states,

respectively, k is the Boltzmann constant and T is the absolute temperature in Kelvin.

The relaxation process is generally recorded using pick-up coils placed along and transverse to

the direction of the static field. The detected signal is known as free induction decay (FID), Fig. 2.7,

and the signal decay rates relate to the relaxation processes. To detect the energy transitions, the

net system magnetization is rotated by 90o transverse to the static field by applying an excitation

pulse for a specific time duration as estimated by equation 2.8.

The 90o pulse causes rotation of the magnetization by 90o and an equalization of population in

the two energy states. Often a 180o pulse is applied after the 90o pulse resulting in an inversion

of population between the two energy states. In this case the higher energy state has a larger

number of nuclear spins (Fig. 2.8). Moreover, the 180o pulse can re-phase the protons i.e faster

protons would move slower and vice versa. This implies that the signal decay and recovery are

both observed at the receiver and a signal known as the spin echo is observed (Fig. 2.7).

Relaxation processes that neither emit nor absorb radiation permit the nuclear spin system to

redistribute the population of nuclear spins. Some of these processes lead to nonequilibrium spin

distribution exponentially approaching the equilibrium distribution over time. When RF energy
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Figure 2.7: Free induction decay and spin echo after application of a 90o and 180o pulse respectively

([88])

Figure 2.8: Effect of 90o and 180o RF pulses on nuclear spin populations (adapted from [90])
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Figure 2.9: Typical behavior on application of a CPMG pulse sequence ([88])

is applied to the nuclear spin system at the precession frequency, the probability of an upward

transition is equal to that of a downward transition. Since there is a greater number of nuclei in

the lower state there will be more transitions from the lower state to the upper state than vice

versa resulting in a nonequilibrium distribution of nuclear spins. When the difference between the

number of protons in each state is equalized, the NMR signal will disappear and the signal is termed

to be saturated.

2.2 Relation to this work

As expressed in equation 2.1, in a given test sample, all the magnetic moments precess about

the static field direction at the Larmor precession frequency.

ω0 = −γB0 (2.13)

However, in a non-uniform magnetic field, the static field spatially varies and in such cases there is a

variation in the precession frequency across the length of the object and in space. The variations in

precession frequency affect the spatial precession rates of magnetic moments. Therefore, a possible

representation of equation 2.1 after incorporating spatial variations can be

ωactual = −γBactual (2.14)
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Using equation 2.14 a method of accurately identifying regions producing NMR signals may

be identified. Detection of NMR signals despite spatial variations and non-uniform fields is per-

formed using various pulse sequencing techniques. One of the popular sequences designed by

Carr-Purcell-Meiboom-Gill (CPMG) [91] is used to measure a modified version of the transverse

spin-spin relaxation time T2∗ which includes the effect of field non-uniformities. In this pulse se-

quence, multiple 180o pulses are repeatedly applied to rephase the protons and obtain several spin

echoes. The magnetic field non-uniformity has an irreversible effect on the molecular interactions

and diffusion. Therefore, the amplitude of the spin-echoes decreases with time. An exponential

fit through the peak’s of the spin echoes is a measure of the transverse decay time, T2. Often the

relaxation time reduces to a smaller value T2∗. Empirically, the measured time T2∗ is given by

1

T2∗
=

1

T2
+

1

T i2
(2.15)

where 1/T i2 = γ∆B is the relaxation rate due to non-uniformity measured across a specific region.

Thus, in this work, in order to incorporate the non-uniform behavior of magnetic fields, CPMG

pulse sequences are employed for a few measurements with the designed sensor. The measurements

of ferromagnetic materials placed in such non-uniform magnetic fields are also evaluated via use

of other simpler pulse sequences. Additionally, detailed analysis on the static field variations will

lead to identification of new static field control mechanisms for improving spatial resolution in

non-uniform fields.
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CHAPTER 3. STATIC FIELDS DUE TO PERMANENT MAGNETS

From prior discussions it is understood that nuclear magnetic resonance (NMR) is a well-

established measurement technique commonly used for the detection and estimation of different

nuclear species. As we also saw in the previous chapters, uniform static magnetic fields are necessary

in most NMR/MRI experiments for creating the DC bias conditions that are eventually integral

for detecting the presence of nuclear species [92]. Permanent magnet based NMR systems bring

the capability of portable NMR detections at the expense of low static field strengths (0.01 -

0.1 T), low signal-noise ratios (SNR) and limited regions of detection [59, 60, 61]. Despite these

drawbacks, several low-field, stray field and non-uniform field NMR measurement techniques have

been designed and implemented by other researchers.

In this chapter, finite element simulation models have been used to estimate external magnetic

field distributions for different permanent magnet geometries. Simulation results show that con-

centric ring magnet geometries possess regions of stable and uniform magnetic fields even in the

magnet’s exterior. Such stable field regions are further studied with the intention of obtaining

flexible control and movement of localized uniform field locations. Using the simulated static field

distribution, expected NMR signal from samples placed in such regions is calculated for different

ring magnet geometries. The findings from this chapter inform the choice of static field generation

methods and specifically design of permanent magnet geometries for obtaining regions of uniform

static field in the magnet’s exterior.

In summary, we seek to understand the magnetic field variations of a permanent ring magnet for

portable NMR applications. The magnetic field exterior to the magnet is evaluated to determine

regions of localized field uniformity. Also, it is expected that with an improved understanding of

spatial magnetic field variations, localized NMR detection may be improved. In turn, these findings

would enhance capabilities of future portable medical diagnostic NMR systems. The main goal of
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Figure 3.1: 3D view of proposed sensor. A transmit/receive coil is placed on top of the permanent

magnet assembly.

this work is to identify parameters which can be used to control occurrence, location and size of

localized stable field regions or saddle points where optimal field uniformity gets achieved.

3.1 Proposed system design

A representation of the proposed portable NMR sensor inclusive of the magnet, measurement

coil and object under test are seen in Fig. 3.1. In this design, the magnets will be magnetized

along the axial direction, a set of surface coils will be placed on top of the magnet to produce a

pulsed magnetic field B1 perpendicular to the applied static magnetic field and the sample under

test (here, a human hand) is placed at reasonable distances from the sensor surface.

Due to the use of permanent magnets, the generated static field is spatially non-uniform and low.

Nonetheless, unilateral systems are capable of generating localized regions of homogeneous magnetic

fields or “sweet spots” [23, 67, 93]. These small homogeneous regions allow for improved signal-to-

noise ratio (SNR), larger sensitive volumes and NMR signals. It is possible that detection in such

localized regions may be valuable for medical applications making MRI portable and accessible to

all. Moreover, such regions of localized field homogeneity could allow for precise detection of small

tumors and their locations.
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3.2 NMR voltage in non-uniform fields

As discussed above, magnetic field variability leads to difficulties in spatially estimating NMR

signals and causes low SNR. Prior work [67, 93, 94] showed ways to estimate the NMR voltage

induced in a receiving coil under conditions of variable fields. In non-uniform magnetic fields, the

NMR voltage is described as per equation 3.1 [93].

VNMR =
2χ

µo

∫
drφ(r)B2

0(r)
ω1(r)

I
F (δωo(r))mx,y(r, t) (3.1)

Here, χ is the nuclear susceptibility, B0 is the static magnetic field produced due to the permanent

magnets, mx,y(r, t) is the local transverse magnetization at point r and time t, F (δωo(r)) is the

frequency response of the detection system, I is the current in the coil needed to give rise to ω1(r)

and φ(r) denotes the local density of spins.

From equation 3.1, it is apparent that besides the receiver characteristics, the voltage signal is

dominated by the strength of the static field and the magnetization of the magnetic moments in

the x-y plane. For the consideration of this discussion, the receiver characteristics will be ignored.

Then, the induced NMR voltage signal will be proportional to various parameters described as

VNMR ∝
∫
drB2

0(r)
ω1(r)

I
mx,y(r, t) (3.2)

Additionally, as per equation 1.1, it is well known that the SNR of NMR measurements is propor-

tional to the strength and homogeneity of the static magnetic field [58] and inversely related to the

gradients in the static field. This implies that to achieve higher SNR the competing requirements of

high static magnetic fields and high field gradients need to be balanced. In fact, minimal variations

in static field strength would lead to higher SNR. Thereafter, in this work, we propose to obtain

higher SNR from regions of localized static fields or identifying regions that have high static fields

and lower field gradients. Such regions will be found by controlled positioning and orientations of

the permanent magnets.
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Figure 3.2: Representation of magnetic flux density (B) from various permanent magnets

3.3 Magnetic fields of permanent magnet geometries

The magnetic fields due to permanent magnets are low and have high magnetic field variability

in the magnet’s exterior. As seen in Fig. 3.2, for most magnet geometries, the magnetic flux density

decays with increasing distance from the magnet’s surface. This means that if NMR signals were

measured using such magnets, users would need to place the samples near to the magnet surface

to benefit from the high static field. However, from Fig. 3.2 it is observed that for a ring magnet

geometry, there is a small region away from the magnet surface where the field is uniform enough

before its decay.

In fact, several NMR magnet designs show the presence of localized regions of uniform magnetic

field [61, 60, 95]. Such regions, often termed as “saddle points” (or sweet spots), occur when the

magnetic fields due to the magnet poles superimpose constructively. Mathematically, a saddle

point occurs at the location where the partial derivatives, ∂B
∂x , ∂B

∂y and ∂B
∂z , are zero but the point

is neither a maxima or a minima. The presence of localized field uniformity within non-uniform

fields implies that saddle points can be used for detecting NMR signals from sample’s placed in a

magnet’s exterior.
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3.4 Simulations of fields produced by permanent magnets

Finite element simulations for permanent magnet geometries can assist in understanding the

effects of the magnetic field produced by permanent magnets in space and in objects with varying

states of magnetization such as paramagnets, diamagnets or ferromagnets. Permanent magnet

materials retain magnetization and correspondingly create a persistent magnetic field. Due to the

material’s state of magnetization, it is well known that no external current sources are required

to create a stable static field. This is advantageous in creating portable devices that require low

magnetic fields. Since permanent magnet’s act as dipoles, the magnetic field lines form closed loops

between the north and south poles, thereafter ensuring that the magnetic flux density, B, has zero

divergence. Thus, Gauss’s law holds true and the net divergence at a point exterior to the magnet’s

surface can be written as follows,

∇.(B0xx̂+B0yŷ +B0z ẑ) = 0 (3.3)

and

∂B0x

∂x
+
∂B0y

∂y
+
∂B0z

∂z
= 0 (3.4)

Generally, a vector field which doesn’t possess a divergence is considered to have rotational behavior.

However, due to the absence of current sources in the exterior of the magnet, from Ampere’s law,

one may state that,

∇×B = 0 (3.5)

Therefore, an approximation for the static field components can be,

∂B0z

∂y
=
∂B0y

∂z
,
∂B0z

∂x
=
∂B0x

∂z
,
∂B0y

∂x
=
∂B0x

∂y
(3.6)

For a spatially varying magnetic field, the spatial dependence of the magnetic field is expressed as

B0z(x) = B(x = 0) +
∂B0z

∂x
+

1∂2B0z

2∂x2
+ ... (3.7)
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Ignoring higher order terms, the spatially dependent magnetic field may be approximated as the

field at the magnet’s surface and the variations often described as a field gradient,

Gx =
∂B0z

∂x
(3.8)

Here the spatial dependence is considered to be limited to only one direction. Correspondingly, the

Larmor precession frequency as described in equation 2.1, can be modified to

ω0 = γ(B0z +G) (3.9)

Here G represent the field gradient of B0z along all possible orientations. One must note that these

approximations wouldn’t hold true within or on the magnet’s surface. They are valid for all points

exterior to the magnet basically in free space.

3.5 Magnetic field simulations for planar magnets

Figure 3.3: Schematic of the magnet and object

Initial simulations were conducted with a NdFeB permanent magnet (0.05 m x 0.05 m x 0.01

m) with a cuboidal object placed above the magnet as seen in Fig. 3.3. The magnet was assigned a

remanent magnetic flux density of 1.32 T (as per manufacturer specifications) and it was assigned

a magnetization along the z direction. The position of the cubical object was varied from 0.01 m

to 0.076 m away from the magnet. Originally, the test object was assigned a permeability of free

space and then assigned a relative permeability of 4000. From Fig. 3.4 it is observed that the

magnetic field undergoes an expected field accumulation in the presence of the magnetic object.

As expected, the magnetic field decays with increase in distance from the magnet surface.
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(a) Permeability = 1 (b) Permeability = 4000

Figure 3.4: Cross-sectional view of magnetic flux density through (a) Non-permeable object and

(b) Permeable object

Thereafter, to perform magnetic resonance experiments with rectangular magnets, the test

samples need to be placed as close to the magnet as possible. The effect of using magnetized

samples in magnetic resonance experiments will become apparent in Chapter 7. Protons in water

samples will resemble the object with the permeability of free space.

Finite element simulations were also performed to estimate the NMR signal which may be

obtained on using different magnet geometries with comparable static field. It was assumed that

the paramagnetic species, 1H, was the test sample. Simulations were performed using planar

geometries such as rectangular magnets (both NdFeB and SmCo), cylindrical magnets and hollow

cylindrical magnets (ring magnets). As in Fig. 3.4a, Fig. 3.5b and Fig. 3.6b, it is observed that the

magnetic field decays uniformly with increasing distances from the magnet surface for the planar and

cylindrical magnets respectively. This implies that for improved SNR and sensitivity samples should

be placed near the magnet surface. From this perspective, ring magnets are advantageous due to

the presence of stable field regions in the magnet’s exterior. Table. 3.1 shows that the estimated

signal level is significantly different for ring magnets due to the localized uniform magnetic field
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region. Therefore, in the following section, a detailed analysis of the the ring magnet geometry is

performed and discussed.

(a) Schematic (b) Magnetic flux density

Figure 3.5: Magnetic flux density for a cylindrical magnet

(a) Schematic (b) Magnetic flux density

Figure 3.6: Magnetic flux density for hollow ring magnets
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Table 3.1: Comparison of estimated signals from different magnet geometries

Geomery Estimated Signal (nV) B0 (T) Frequency (MHz)

Rectangular 0 0.005 0.2

Cylinder 0 0.14 6.01

Ring 9 0.14 5.94

3.6 Ring magnet considerations

As shown in the prior section, the dependence of NMR voltage on the static field introduced by

ring magnets, and as demonstrated by [95, 96], ring magnets properties have various advantages for

sensor design and need further examination. Finite element simulations for obtaining the maximum

uniform field in the magnet’s exterior and to obtain static field distribution maps were performed

in COMSOL Multiphysics software. From the static field maps, the saddle point locations and

induced NMR signal were estimated for different magnet parameters.

Initial simulations were performed to optimize the design of the magnet geometry. A magnet

with a 0.025 m diameter and a height of 0.025 m was used. A remanent magnetic flux density

of 1.32 T was used to define an axial magnetization (along z) for the NdFeB ring magnet. The

magnet’s inner radius (IR), outer radius (OR) and height (H) were varied to obtain the highest

static flux density at a reasonable distance from the magnet surface.

First, as seen in Fig. 3.7a, the axial location of the saddle point is dependent on the magnet’s

inner radius. For a fixed outer diameter of 0.025 m and a height of 0.025 m, it is observed that

the saddle point occurs above the magnet at distances equal to the inner radius. Additionally, for

smaller inner radii, the overall magnetic flux density increases.

From Fig. 3.7b, it can also be seen that a larger outer radius would contribute to a higher

magnetic flux density. Additionally, the axial location of the saddle point shifts with changes in

the outer radius.

Lastly, simulations for height variations as a function of distance from the magnet’s center,

Fig. 3.7c show that after attaining a particular height, the improvement in the magnetic flux



www.manaraa.com

33

(a) (b)

(c)

Figure 3.7: (a) Inner radius variations (b) Outer radius variations (c) Height variations.

density is marginal. Moreover, the saddle point’s distance from the magnet’s surface appears to be

independent of any height variations.

In applications, an array of permanent magnets will be stacked to achieve a saddle point at

specific locations (1-10 mm) above the magnet surface. The object under test will be placed at

the saddle point. To overcome large magnetic field gradient effects, specific pulse sequences such

as Carr-Purcell-Meiboom-Gill (CPMG), spin echoes or Hahn echoes[18, 23, 97] will be applied to

acquire desired NMR signals from samples under test.

On the basis of initial simulation findings as seen in Fig. 3.7, several variations in the magnets

dimensions and geometry were performed. These variations were tailored to obtain the highest
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Figure 3.8: Cross-sectional view of different magnet assemblies tested. Here N and S represent the

magnet poles. IR - Inner radius, OR - Outer radius, H - Height

estimate of the NMR signal from the protons present in the sample at the saddle point. Table.

3.2 is a summary of the magnet dimensions and approximations of estimated NMR voltage (using

equation 3.2) for an assumed B1 of 0.001 T and a coil current of 5 A. In real applications, the

spatial variation in B1 needs to be incorporated in such calculations.

Table 3.2: Summary of estimated NMR voltage for different inner radii and resonant frequency

Inner Radius (m) B0 (T) VNMR (nV) f (MHz)

0.0016 0.38 12 16.12

0.003 0.27 12 11.63

0.006 0.14 9 5.95

0.009 0.06 5 2.40

As previously discussed, further flexibility in the position and location of the saddle point can

be obtained by placement of concentric magnetic inserts within the ring magnet. In order to test

this, a concentric ring magnet and a cylindrical insert were tested and the effects on the position

and size of the saddle point were recorded. An inner radius of 0.006 m was used to provide sufficient

inner diameter for placing a magnetic insert.

Fig. 3.8, shows a cross-sectional view of the different geometries tested. From Fig. 3.9, it is

observed that the static flux density increases with addition of a magnetic insert. This implies

that the precession frequency also increases. For the geometry involving two concentric rings, it is

observed that the saddle point has a higher magnetic flux density and it’s location is closer to the

magnet surface. At the same time in the case of the concentric cylinder, the location of the saddle
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Figure 3.9: Location of saddle point for different magnet assemblies

point is the same as the concentric ring. In fact, from the voltage sensitivity maps, Fig. 3.10b and

3.10c, it is observed that multiple off-axis saddle points may exist for such geometries.

The axial saddle point using magnetic flux density maps for different magnet geometries may

be observed in Fig. 3.10. Here, the voltage sensitivity is estimated using equation 3.2. After

fine tuning the position of the inserts to obtain maximum NMR voltage at the saddle point, it is

observed that the effect of the magnetic insert is comparable for the concentric ring and cylinder,

Table. 3.3. Minor off-axis saddle points are observed though these points haven’t been used for

estimating the NMR voltage. On addition of the insert, the saddle point location shifts closer to

the magnet surface and the required detection frequency has increased.

Another view of the magnetic flux density for varied inserts may be observed in Fig. 3.11 and

Fig. 3.12. These are cross-sectional views for ring magnets with cylindrical and ring inserts of

different heights. The insert position is varied to obtain large saddle points. Since the magnetic

flux density increases with insertion of another magnet, the resonant frequency also increases. The

magnetic flux density simulations show that with a full ring/cylindrical insert, the estimated NMR

signal almost doubles with a slight increase in precession frequency.
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(a) (b)

(c)

Figure 3.10: Saddle point for (a) Ring (b) Unaligned concentric insert and (c) Aligned concentric

insert with IR: 0.006 [m]

(a) Concentric Half Cylinder (b) Concentric Full Cylinder

Figure 3.11: Simulations for various saddle points on addition of cylindrical inserts within ring

magnets
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(a) Ring Half Cylinder (b) Ring Full Cylinder

Figure 3.12: Simulations for various saddle points on addition of ring inserts within ring magnets

Table 3.3: SNR and Signal voltage for different magnet geometries for IR: 0.006 [m]

Geometry B0 (T) VNMR (nV) f (MHz) Insert Shift (m)

Ring 0.14 9 5.9 NA

Concentric Insert 0.29 14 12.3 0

Concentric Insert 0.21 19 9.12 0.004

Dual Magnet 0.28 31 11.7 NA

3.7 Effect of using dual concentric ring magnets

Another approach towards maximizing the area of saddle points is the use of two permanent

magnet geometries placed symmetrically opposite to one another along the same axis. The distance

between two symmetrical ring magnets was varied to identify distances at which maximal stable

field regions may be obtained. Additionally, variations were controlled such that samples as large as

0.02 m may be placed between the symmetrical magnets. However, even in such cases the detection

region (where field is uniform) is between 0.01 to 0.018 m. In contrast to the ring magnets, on

using the dual magnet assembly the NMR signal was estimated to be three times larger, albeit

obtained at twice the operational frequency, 3.14. Additionally, while the saddle point occurred at
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Figure 3.13: Comparison of static field strength for ring and dual magnet

distances equal to the inner radius for ring magnets, in the case of dual magnets the saddle point

occurred at the center of the two magnets. The static field strength decreased with an increase in

the distance between the magnets. However, the dual magnet seemed to be much more efficient

than other prior magnet designs in the sense that a larger signal amplitude and detection region

could be obtained.

3.8 Conclusions

Several different parameters that contribute to the existence of saddle points in non-uniform

magnetic fields were investigated. For the case of ring magnets, the location of the saddle point was

found to be dependent on the magnet’s inner and outer radii. The magnet’s height didn’t affect

the location or static field strength significantly once the height was larger than the magnet’s outer

diameter.

With addition of magnetic inserts, the static field strength increased by a factor of half. Besides

the improvement in static field strength, the axial position of the saddle point was affected and

secondary saddle points were observed at off-axis locations. Moreover, with the addition of the

insert, the estimated NMR voltage also increased by a factor of half. The SNR also improved with

improvements in static field strength and minimal spatial variations.
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Figure 3.14: Voltage sensitivity map depicting saddle point for dual ring assembly with an inner

radius of 0.006 [m]

Lastly, with the use of dual ring magnets, the magnetic flux density and detection volume

increased. However, the spacing between the magnets limited the actual detection region.

From these simulation results, it is expected that measurements with the designed magnet

geometry and insert would enable localized NMR detection at approximately 1-10 mm near the

magnet’s surface.

3.9 Future work

From this work, a systematic simulation study for the ring magnets was performed and the re-

lation between the NMR voltage and the saddle point was understood. Incorporating the receiving

coil characteristics would provide a better perspective of the received voltage. Moreover, the char-

acteristics of the receive coil such as operational bandwidth and coil resistance would contribute

to improvements in estimating the NMR voltage and SNR. Finally, measurements of signal decay

time for different biological specimens would validate meaningful medical diagnostic capabilities.
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CHAPTER 4. PULSED FIELD GENERATION

4.1 Pulsed Magnetic Fields

Once the static field from the permanent magnets orients the magnetic moments, a pulsed field

is needed to reorient and detect the response of the magnetic moments. This is because force-based

magnetic field measurements require interacting magnetic fields [98]. In such measurements, a

magnetic dipole placed in a uniform external magnetic field experiences a torque. Then,

τ = m×B (4.1)

the turning force (torque, τ) is proportional to the strength of the applied magnetic flux density

(B) and the associated dipole magnetic moment (m) [98].

Magnetic resonance measurements are an extension of force-based magnetic field measurements

wherein the magnetic dipoles are nuclei, electrons or protons. In nuclear magnetic resonance

(NMR), the magnetic moments associated with the nuclei act as the magnetic dipoles. A static

external biasing field is first applied to provide a bias magnetic field and align all magnetic moments.

Then, a pulsed magnetic field is applied. The pulsed field creates a torque and causes reorientation

of magnetic moments. When the frequency of the applied pulsed field is equal to the energy

difference between quantized nuclear states, nuclear transitions occur between the energy states.

This condition is when nuclear magnetic resonance occurs [99]. Once the pulse is removed, nuclei

return to their original energy states. Minute signal produced during this process are then acquired

by using detection coils which are placed transverse to the direction of the applied static field.

In conventional NMR measurements the static field is much higher than the pulsed field [18].

This means that once the pulsed field is removed, the magnetic moments revert back to their original

alignment along the static field. Consequently, to detect magnetic resonance signals, the detection

coils need to be placed in alignment with the pulsed field instead of the static field. Therefore,
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pulsed fields are applied in a direction perpendicular to the static field, enabling detection of the

minute NMR signals by alignment with direction of maximum flux change .

In unilateral NMR, the detection mechanism and principle of operation remains the same as in

conventional NMR. However, the external magnetic field strength is considerably lower due to the

use of permanent magnets or one-sided application of static field. In this situation, the magnitude

of the applied pulsed field can become comparable to the external magnetic field. However, due

to its frequency of operation, the pulsed field is capable of initiating temporary reorientation of

magnetic moments. Detection of magnetic moment reorientations may be difficult in low fields;

consequently, it becomes necessary to improve and control the design of the pulsed oscillating field

such that the required magnetic moment reorientation and NMR detection processes can still occur

under low-field conditions [100].

4.2 Need for pulsed fields

The pulsed magnetic field is used alongside the static field generated by the permanent magnets.

The pulsed field causes transverse reorientation of the magnetic moments aligned along the static

field. To achieve such reorientation’s, the oscillation frequency of the pulsed field is tuned to be the

same as the precession frequency of the test samples. As specified previously, the static field strength

determines the precession frequency of the magnetic moments. Correspondingly, the pulsed field

frequency needs to be tuned with respect to modifications in the static field. Additionally, the

strength of the pulsed field is much lower than the static field to avoid any magnetic saturation of

the magnetic moments.

The existing pulsed magnetic field generation systems use expensive equipment to generate a

pulsed magnetic field and simultaneously receive signals on the same coil. In this chapter, a design

for a low field, low frequency (less than or equal to 5 MHz), pulsed magnetic field generation

circuit suitable for transmitting pulsed magnetic fields is described. A pulsed sinusoidal current is

passed through an inductive load controlled by a high-speed switching field effect transistor (FET).

In the initial design, the inductive load resonates at a frequency of approximately 2 MHz which
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corresponds to the precession frequency of 1H protons in an external magnetic flux density of 0.05

T. The designed circuit is further modified for improved operations and can be tuned to operate

at resonant frequencies of other nuclear species as well.

4.3 System overview

The design of the pulsed magnetic field generator requires several integral units. The units

should be able to achieve the following:

1. Pulsed sinusoidal signal at Larmor precession frequency

2. Rapid switching of coil at Larmor precession frequency

3. Sufficient current through coil to produce pulsed magnetic fields

4. Adequate pulse width to achieve transverse precession

A systems level schematic of the designed circuit, as shown in Fig. 4.1, highlights the different

design stages.

Figure 4.1: System block diagram. The four system design blocks are represented at the top.
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In order to obtain a pulsed sinusoidal current, a pulsed sinusoidal voltage is used to activate

the switching FET. Then, the signal generation, amplification and delay stages as seen in Fig. 4.1,

are used as the pulse forming network.

Two square wave inputs, as depicted in Fig. 4.3, were combined and applied to a pulse shaping

stage known as an electromagnetic delay line. The delay line generates a band limited pseudo-raised

cosine pulse. This pulse drives the gate of a FET-based switch that is connected to a coil at the

drain. Often, a capacitor may be connected in series or shunt with the coil to achieve sustained

oscillations at the required Larmor frequency. In this design such a connection was avoided to

reduce ringing or occurrence of other secondary oscillations. To obtain the desired pulse width, the

input pulse parameters and delay line elements are tuned to the required operational frequency.

Figure 4.2: Linear dependence between magnetic flux density and frequency as described in equation

2.1

In this initial design, a lower precession frequency was selected (approximately 2 MHz) for

operation with NMR systems that generally operate at low flux densities. The linear dependence
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between the precession frequency and static field strength, as described in equation 2.1, and ob-

served in Fig 4.2, highlights the limitation on the maximum operational frequency, namely the static

field strength. It is important to note that 1H has a gyromagnetic ratio of 42.1 MHz/T and thus

for an external flux density of 500 G the precession frequency would be approximately 2.12 MHz,

which is approximately equal to the design frequency of the initial circuit design. Correspondingly,

forming a design perspective on the expected pulsed field, the oscillation frequency depends on the

static field and the pulsed field strength depends on the coil geometry. A comparison between the

calculated field and current for different coil geometries is seen from Table. 4.1.

Table 4.1: Comparison of calculated field and current for different coil geometries in free space

Coil Geometry Dimension Turns Magnetic Field Current

Current loop R = 0.05 m 1 1.2E-4 T 10 A

Solenoid L = 0.05 m 10 2.5E-3 T 10 A

Toroid R = 0.05 m 10 0.4E-3 T 10 A

4.4 System design and pulse parameters

The designed circuit will be described according to the different stages listed in Fig. 4.1. In

the first stage or the signal generation stage, two different pulse generators were used to generate

square pulses. The frequencies were selected to be the modulation frequency (which was the same

as the Larmor precession frequency) and the pulse repetition frequency (which was selected such

that sufficient gap may be obtained between adjacent pulses). The pulse repetition frequency

may be externally controlled to obtain specific pulse repetition patterns or sequences in operation.

Additionally, the pulse width needs to be controlled to obtain magnetic moment rotation by 90o

or 180o. For the designed system, both the pulse generators were synchronized using an external

clock signal (at 10 MHz).
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Figure 4.3: Simulated vs Measured pulsed sinusoidal generated at the output of the mixer (AND

operation). Input pulse frequencies were selected to be 50 kHz and 2 MHz respectively.

The generated square pulses, as shown in Fig. 4.3, were then applied as inputs to a logic

AND gate and the output were applied to the initial switching stage of the system. Due to lower

operational frequency, the AND gate was adequate for combining the two signals. For higher

operational frequencies (greater than 12 MHz) other methods may be used. A schematic of the

implemented circuit is seen in Fig. 4.4. In the input switching stage, the generated pulsed sinusoidal

is applied to the gate terminal of a logic level FET. The logic level FET acts as a buffer between the

signal generation and initial switching stage. The FET has a low on resistance and gate threshold

voltage and can thus respond quickly to fast switching signals. The drain terminal of the FET is



www.manaraa.com

46

connected to a PNP transistor as seen in Fig. 4.4. The transistor can act as both an amplifier

and a switch. The bias condition of the transistor may be easily varied by changing the biasing

resistors. The presence of the 220 Ω feedback resistor between the base and emitter helps maintain

the base-emitter junction forward biased and the base-collector junction is held reverse biased.

Therefore, the PNP transistor operates in the active region. In the absence of the 220 Ω resistor,

the transistor wouldn’t be in the active region of operation. Additionally, the bias condition may

be modified by changing the 120 Ω resistor.
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Q1

50Ω

A

Q
2 15.1Ω

25
92
p
F

2.54µH

0
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2− 5V
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3− 5V

Figure 4.4: Schematic of the designed circuit.

A contrast between the experimental and simulation results can be observed in Fig. 4.5. Here,

it is observed that the high frequency oscillations aren’t obtained in simulations unless the input

signals duty cycle is reduced from 50% to 20%. However, measurements at the base terminal, Fig.

4.5b, seem to indicate the presence of a modulated input signal. The collector voltage, Fig. 4.5c,

follows the signal at the base though at higher duty cycles the pulsed oscillations aren’t observed

in simulation or measurement.

Meanwhile, a sufficient amount of current ( 300 mA) is needed for operation of the electromag-

netic delay stage. The output measured at the PNP transistor, Fig. 4.5, is subsequently applied
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(a) Emitter voltage (b) Base voltage (c) Collector voltage

Figure 4.5: Simulation vs Experimental Measurements at the PNP transistor

to the 15 Ω resistor in the electromagnetic delay line. In this initial design, the delay line acts

as the pulse forming network [101]. It is tuned to operate at a frequency of 2 MHz as that was

the expected frequency for hydrogen precession for an externally applied flux density of 0.05 T. A

pulse repetition rate of 20 µs was selected. Generally, a delay line comprises a set of capacitors and

inductors which cause a phase delay to the applied signal. Such networks are often used to generate

a raised cosine pulse. The rise and fall time of the pulses are adjusted by tuning the inductive and

capacitive elements in the delay line. Moreover, the addition of multiple poles in the network gives

users the flexibility to obtain different waveshapes at the output.

In this circuit implementation, in the final switching phase, the impedance of the delay line

elements needs to be scaled with respect to the impedance parameters of the switching device. In

this design, the input capacitance of the switching FET was used to scale the impedance of the

delay line elements. The scaling factor, K, and the other pulse parameters are summarized in Table.

4.2. Initially, a low pass prototype, was obtained for a 50Ω impedance and then scaled using the

scaling factor based on the gate capacitance of the switching device. The input pulse parameters

were adjusted to obtain a pulse with a pulse width of 10 µs.



www.manaraa.com

48

Table 4.2: Electromagnetic Delay Line Parameters designed for a frequency of 2 MHz

Parameter 50 Ω Model Scaled Model

K =
Cfetinput

C50OhmModel
1 3.26

R = 1
2

√
L
C 50 15.4 Ω

L = 4R2C 7.95 µH 2.5 µH

C = 1
2Rω 795 pF 2592 pF

(a) IRF 510, 20% duty cycle (b) IRF 510, 50% duty cycle

(c) IRF 540, 20% duty cycle (d) IRF 540, 50% duty cycle

Figure 4.6: Comparison of signals at the delay line and switching device for an inductance of 100

nH
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Simulations were performed using two different MOSFET’s as switching devices. IRF 510 a fast

switching but low current MOSFET and IRF 540, a fast switching and a high current MOSFET

were used. The motive of using these two different devices was to understand the loading effects

on the delay line based on the device characteristics.

(a) IRF 510, 20 % duty cycle (b) IRF 510, 50 % duty cycle

(c) IRF 540, 20 % duty cycle (d) IRF 540, 50 % duty cycle

Figure 4.7: Comparison of signals at the delay line and switching device for an inductance of 500

nH

Two other parameters were found to be important in designing the final switching stage. These

were (i) the load inductance and the (ii) duty cycle of the applied pulse. In Fig. 4.6, it is observed
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that for IRF 510, Fig. 4.6a and 4.6b, with a load impedance of 100 nH, with an increase in the pulse

duty cycle, the pulsed oscillations do not pass through the delay line and the output oscillation

frequency is not accurate. However, with IRF 540, Fig. 4.6c and 4.6d, while the pulsed oscillations

still appear at the drain, the coil rings and remains on during the time the pulse is switched off.

This observation implies that while a higher duty cycle can be sustained with IRF 540, other

mechanisms need to be implemented to contain the ringing due to the coil.

(a) IRF 510, 20 % duty cycle (b) IRF 510, 50 % duty cycle

(c) IRF 540, 20 % duty cycle (d) IRF 540, 50 % duty cycle

Figure 4.8: Comparison of signals at the delay line and switching device for an inductance of 1 µH
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To observe the effect of the coil inductance two other studies were performed with the same

FET’s and similar simulation parameters. These studies used a coil of 500 nH and 1 µH respectively

and the observations are summarized in Fig. 4.7 and Fig. 4.8.

For an inductance of 500 nH, ringing was still observed with both FET’s with the variations in

duty cycle. With IRF 540, Fig. 4.7c and Fig. 4.7d, the ringing was significantly reduced. However,

the pulse repetition frequency was also impacted and a minimal number of pulses were transmitted.

Based on these simulation results, it was expected that signal ringing could be minimized once

the coil inductance was increased. However, on increasing the coil inductance to 1 µH, with IRF

510, Fig. 4.8a and 4.8b, it was observed that the ringing was still present during the pulse down

time. With IRF 540, Fig. 4.8c and Fig. 4.8d, while the ringing was not present, the pulse oscillation

frequency was impacted due to the high inductance of the coil. Therefore, from these simulation

results, it is apparent that a delicate balance exists between the coil inductance and the switching

device.

4.4.1 Simulated current based on the inductance

The modulated pulse as obtained at the output of the delay line is applied to the gate of the

fast switching FET. The selected FET can sustain high drain currents (up to 100 A) and high

switching speeds (approximately 30 ns). Initial designs had a resonant RLC at the load of the

FET. This load was assumed to sustain oscillating magnetic field that would be generated by the

inductive coil. A feedback loop was also provided for quick dissipation of the pulse during the off-

time of the signal. After initial measurements and simulations, the resonant load was replaced by a

non-resonant inductive load to minimize the high ringing introduced in the resonant configuration.

Simulations for the current through IRF 510 with different duty cycles and IRF 540 may be

observed in Fig. 4.9 and Fig. 4.10 respectively. Through the simulations for IRF 510, it was

observed that with a higher inductance, the pulse ringing significantly increases with an increase

in the value of inductance. The ringing was not eliminated despite the use of varying duty cycles.

A variation in the drain voltage, Fig. 4.10c or Fig. 4.10d, to ensure the FET’s bias condition did
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not affect the simulated current levels ensuring that the FET was sufficiently biased to operate in

the desired region and unaffected by the range of the inductance used as the load.

(a) 100 nH (b) 100 nH (Zoomed)

(c) 500 nH (d) 1 µH

Figure 4.9: Simulated current for IRF 510 with varying values of inductance, drain voltage and

duty cycles

Lastly, simulations for the current through IRF 540, Fig. 4.10, showed that higher current

levels were obtained at the cost of the pulse ringing during the signal off time. Additionally, with
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an increase in inductance, the pulse oscillation frequency reduced along with a reduction in the

maximum current that could be passed through the coil. Therefore, larger inductances weren’t

preferred for high current applications.

(a) 100 nH (b) 100 nH (Zoomed)

(c) 500 nH (d) 1 µH

Figure 4.10: Simulated current for IRF 540 with varying values of inductance and duty cycles
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4.5 Experimental measurements

A prototype of the designed pulsed field generator is observed in Fig. 4.11. The circuit can

generate variable oscillating magnetic fields at several operational frequencies based on the elec-

tromagnetic delay tuning. The signal generation stage in this prototype can also be modified to

obtain continuous NMR pulses for other NMR applications.

Figure 4.11: Designed pulsed field generator circuit prototype.

Figure 4.12: Voltage measured at the end of the pulsed delay line. This is applied to the gate of

the switching FET. The slight DC offset is necessary for activation of the switching FET.
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To ensure operations, the voltage at the gate terminal, Fig. 4.12, should be sufficient to activate

the switching FET. A negative offset is applied at the source terminal of the switching FET such

that a deep conduction channel forms between the drain and source on application of appropriate

gate voltage. While the measured waveform clearly represents the pulsed sinusoidal signal, the

simulated waveform, depicts oscillations only with a 20 % duty cycle. Sufficient gate voltage

ensures that the FET is biased into the saturation region.

In the present configuration, a peak pulsed voltage of about 9 V, Fig. 4.13, can be obtained at

the drain of the switching FET. A representation of the experimentally measured signal levels at

the inductive load as a function of time, in the designed circuit is in Fig. 4.13. Experimentally, the

peak voltage is 9 V and correspondingly the peak current is recorded as 4.5 A. The corresponding

magnetic field may be estimated based on the selected coil geometry. In this design prototype

a fixed inductor was used due to its low parasitic resistance and a pulsating magnetic field at a

frequency of 2 MHz was generated.

A lower load inductance would allow for faster switching and also have minimal loading effects

on the switching FET. In general, a higher inductance would cause large voltage overshoots on

turn-off and limit the maximum current through the coil. Meanwhile, a wider pulse width would

lead to generation of a higher magnetic field since there would be more current flowing through

the inductive load. However, supporting high duty cycles, and high pulsed currents are inherently

dependent on the device properties of the switching FET.
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Figure 4.13: Signal measured at the load of the switching FET. A small series resistance of 2 Ω

was connected to estimate the peak current, applied drain voltage was 5 V.

Experimental measurements reveal several different factors for consideration. Firstly, the two

input pulses need to be synchronized. This is achieved by triggering both the sources with the

same external clock pulse at a frequency of 10 MHz. Secondly, the source terminal of the switching

FET needs to be sufficiently reverse biased to achieve activation of the gate terminal. Lastly, the

resonant configuration of the inductive load and the inductor used within the delay line are both

sources of multiple oscillations or ringing. These parameters need to be selected carefully based on

the required application. In particular, the operational bandwidth, the resonant frequency of the

load, fast discharge of the energy stored in the inductive load are design parameters that need to

be carefully analyzed.

The designed pulsed field circuit can operate at a resonant frequency of 2 MHz such that it

could be used in an external flux density of 0.05 T. However, the actual impedance parameters used

in the circuit vary slightly and were tuned. These impedance variations in the pulsed delay line

led to a resonant frequency of 1.8 MHz. The energy stored in the inductive load was also found to

produce ringing when connected in a resonant configuration. Thus the resonant configuration was

modified to a non-resonant load configuration.
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In summary, a design for a pulsed magnetic field generator was simulated, implemented and

experimentally verified. Simulation results have shown that a pulsed sinusoidal with a resonant

frequency of up to 5 MHz can be easily achieved by tuning the characteristics of the pulsed delay

line and the input pulse’s duty cycle and optimally selecting the switching FET connected to the

inductive load. The choice of the inductance also affects the turn-off time for the switching FET.

4.6 Possible improvements

The design of the prototype pulsed field generator revealed several avenues of improvement.

In particular, the selection of the inductive load and the switching device needs to be made by

considering the amount of current needed to generate appropriate pulsed magnetic fields. At the

same time, the generated magnetic field should have a discharge path when the pulse is switched

off and possible ringing at the load needs to be controlled. Another interesting aspect is the user’s

control on the input pulsed sinusoidal signal. A combination of these parameters will lead to design

of a user friendly and stable multi-frequency pulsed magnetic field generator.

Finally, design updates to minimize loading effects and higher frequency operation have been

implemented and the improved pulsed field generator design is discussed in the following chapter.
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CHAPTER 5. IMPROVED PULSED FIELD GENERATION

From the prior chapter, we know that pulsed magnetic fields can be used to provide instanta-

neous localized magnetic field variations. In the presence of static fields, pulsed field variations are

often used to apply torques and can also be used to measure behavior of magnetic moments in dif-

ferent states of orientation. In this chapter, an update to the design and evaluation of experimental

performance of the designed pulsed magnetic field generator is described.

One of the primary challenges of low bias field NMR measurements is low signal to noise ratio.

This is caused due to the comparable nature of the bias field and the pulsed field [18]. Therefore,

the design of the pulsed field generation circuit needs updates such that it generates controlled

pulsed currents and fields which can momentarily exceed the effect of the bias field on magnetic

moments. The designed circuit also needs to be tuned to operate at the Larmor precession frequency

of 1H (protons) placed in a bias field produced by permanent magnets. Additionally, the designed

circuit parameters may be tuned to operate under different bias conditions. In this chapter an

improved pulsed magnetic field generation system suited for low field pulsed NMR applications will

be described. Circuit simulations will be used to determine design parameters and corresponding

experimental measurements are presented.

5.1 Theoretical perspective

For portable NMR applications, the magnitude of the pulsed magnetic field needs to be com-

parable or lower than the magnitude of the external static magnetic field to achieve temporary

magnetic moment reorientation [102]. It is well known that the NMR resonant frequency, ωo is

proportional to the external field, Bo as per equation 2.1. Correspondingly, the induced NMR

voltage is considered to be proportional to[94],

VNMR ∝ ωom
(
B1

I

)
(5.1)
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Then, from equation 5.1, it is observed that the measured NMR voltage is directly proportional to

the strength of both the static and pulsed field and as per the equation 5.1, inversely proportional

to the current creating the pulsed field. Through equation 5.1, it is also evident that the pulsed

field and the current are competing factors. In general, a higher current would lead to a higher

pulsed field. In actual application, coil parameters also contribute to the field generated and need

to be tuned to achieve a higher NMR voltage signal.

There are several ways of achieving high pulsed magnetic fields [103, 104, 105, 106]. From

Ampere’s law, the simplest way is to increase the current. Alternatively, the coil or inductive load

design and parameters may be controlled to achieve higher pulsed magnetic fields [107, 108]. Over-

all, to be independent of the coil design parameters, in this chapter, our focus is on demonstrating

a design wherein we increase the current through the transmitting coil. Subsequent signal detection

will be implemented using orthogonal inductive coils.

5.1.1 Obtaining high current

The pulsed magnetic fields need to be enabled only for short durations (between 10 - 100 µs).

Due to the requirement of short pulse widths, a large amount of current should flow through the

inductor in a very short time (approximately 10 µs for the present design [100]). Then, the fastest

way to obtain high current through an inductive load is by allowing a capacitive discharge through

the inductor [103, 104]. In order to realize this, a capacitor bank will be used to firstly support the

fast rising edge through the inductor and then to provide sufficient current during the applied pulse

width. It is well known that the current drawn from the capacitor will be proportional to the time

rate of change of voltage across the capacitor. In our design, capacitors, which can support rapid

changes in voltage should be used. Based on equation 5.2, a pulse width of 10 µs or more (typical

widths vary between 1 - 50 µs) will be applied to achieve a 90◦ rotation of magnetic moments for

detection of precession due to 1H atoms. The pulse width scales inversely with the strength of the

pulsed field.
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Figure 5.1: System blocks for the designed pulsed field generator

t90◦ =
φ

γB1
(5.2)

Here, t90◦ , corresponds to the time required for a 90◦ rotation (pulse width), φ corresponds to the

rotation angle, γ is the gyromagnetic ratio which depends on the nuclei and B1 is the strength of

the pulsed magnetic field.

5.1.2 Design approach

The design of the pulsed magnetic field generator incorporates devices which can sustain high

switching rates over a specific pulse duration. Switching devices such as transistors and FETs

can be easily used to achieve rapid switching [109, 110] over particular time duration. However, to

achieve high current, different current amplification methods must be incorporated. While our prior

work [100] demonstrated the feasibility of sustaining a pulsed sinusoidal signal through an inductive

load, the required current levels at higher frequencies weren’t achieved due to inefficient biasing and

impedance loading of the switching device. Thus, in the present work, a circuit with an improved

current amplification mechanism along with reduced impedance loading effects is demonstrated.

5.2 Circuit design and pulse parameters

The designed circuit includes several stages enlisted in Fig. 5.1: signal generation, pulse shaping,

voltage amplification and current generation. The corresponding circuit design is depicted in Fig.

5.2. Below, a short description of each stage and its role in the circuit operation is discussed.
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Figure 5.2: Schematic of designed circuit with different design blocks: signal generation, pulse

shaping, amplification and switching

5.2.1 Signal generation

The first stage is a digital signal combiner. Two square pulses with pulse parameters 0.5 MHz, 5

V and 50 kHz, 5 V are combined using a NAND logic gate. The signal frequencies are selected such

that one frequency corresponds to the Larmor precession frequency of 1H and the other frequency

relates to the pulse width that would be sufficient for temporary reorientation of magnetic moments.

Since the bias static field may vary between 0.01 T - 0.4 T, the required pulsed field would vary

correspondingly and the exact pulse width can be determined using equation 5.2. Thus, based on

the equation, the pulse width of 50 kHz can be easily tuned. In general this pulse width is expected
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Figure 5.3: Simulated signals for the input stage at 0.5 MHz. Here a feedback resistor of 300 Ω

was used between the base and emitter terminal of the PNP transistor.

to cause a temporary 90◦ or 180◦ rotation in the orientation of the magnetic moments. In contrast

to the prior design’s use of AND gate, a NAND gate ensures minimal signal distortion and rapid

switching of the input pulses.

5.2.2 Pulse control and shaping

The modulated square pulse, as seen in Fig. 5.3, is applied to a set of transistors. Both the

input transistors are biased to operate as switches. When the signal is low, the PNP transistor is

active (the base-emitter junction is forward biased and the base-collector junction is reverse biased)

and the signal will propagate on to the delay line. Meanwhile, the NPN transistor will be activated

when the signal at the base terminal is high and any residual signal from the collector would be

passed to ground. Such an arrangement is used to ensure that no signal ringing occurs during

switching.
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The delay line serves the function of pulse shaping the modulated signal. The signal is shaped

to a sinusoidal by adequate control of the rise and fall time of the signal. In this stage the signal

shape and characteristics are defined. Table 5.1 summarizes the delay line parameters for a resonant

frequency, f = 0.5 MHz and correspondingly, ω = 1√
LC

= 2πf is used to estimate the values for

L and C. Further scaling of delay line parameters for use at different frequencies can be done

Table 5.1: Electromagnetic Delay Line Parameters designed for a frequency of 0.5 MHz.

Parameter 50 Ω Model Scaled Model

R = 1
2

√
L
C 50 Ω 500 Ω

L = 4R2C 31.8 µH 318.31 µH

C = 1
2Rω 3.18 nF 0.318 nF

accordingly. A summary of the required components is in Table. 5.2.

Table 5.2: Electromagnetic Delay Line Parameters for various operational frequencies

Frequency (MHz) R(Ω) L(µH) C (nF)

0.5 500 318.31 0.318

1 500 159.15 0.159

2 500 0.795 0.0795

5 500 31.8 0.0318

5.2.3 Voltage amplification

In contrast to the prior design described in chapter 4, isolation between the switching FET

and delay line was incorporated using an operational amplifier (opamp). The opamp was used to

minimize loading effects between the two stages. For an operational amplifier, the input impedance

experienced by the opamp doesn’t affect its output characteristics. Thus, the output of the opamp

is stable and unaffected by the input or the attached load. Besides eliminating the loading effects,

the opamp also amplifies the output voltage which is used to bias the switching FET into the

saturation region. Multiple feedback paths are used to obtain stable operations from the opamp
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and the details are discussed in section 5.4. In this initial iteration operational amplifier, LM 6152,

was selected since its high gain bandwidth of 75 MHz would allow us to obtain pulses upto 10 MHz.

5.2.4 Current generation

The final stage of the designed circuit incorporates the output switching device, the inductive

load and the capacitive bank. As soon as the gate of the switching FET is enabled, the energy

stored in the input capacitor bank is immediately discharged through the inductive coil. Once the

gate is disabled, the energy of the inductor dissipates through the parallel resistive load. Switching

FET, part no. DMTH10H010LCT, was selected as the switching device due to its characteristic

high pulsed current (92 A) and rapid rise and fall time (nanoseconds).

5.3 Experimental measurements at 0.5 MHz
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Figure 5.4: Signals measured after NAND gate and at input and output of delay line tuned to

operate at 0.5 MHz. The input signal is measured at the collector of the NPN transistor
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Several tests were performed on the prototype circuit. The signals measured at different stages

within the circuit were recorded. Realistically, the design of the delay line may be modified to

support various operational frequencies. In the first design iteration, 0.5 MHz was selected as the

frequency of operation. From equation 5.1 it is well known that the NMR signal measured will

be directly proportional to the precession frequency, thus, a higher precession frequency would

in general correspond to a higher NMR signal and better signal to noise ratio. Once successful

operations are obtained at 0.5 MHz, the circuit will be scaled for operations in a static field of 0.1

T and in a frequency range of 5 - 10 MHz.

Fig. 5.4 shows the modulated signal output at the NAND gate and the signals at the two ends

of the delay line. Since the signal transmission occurs when the PNP transistor is active, there is

a phase offset between the output of the NAND gate and the signal applied to the delay line. A

further phase shift is introduced due to the delay line. At the same time the rise and fall time of

the pulsed signal increases as it passes through the delay line.
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Figure 5.5: Signal variations at opamp output with variations in drain voltage
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Figure 5.6: Waveform measured at the inductive load on application of a 5V signal at the drain

The next stage involves the operational amplifier (opamp). The opamp amplifies the signal at

the output of the delay line and applies it to the gate terminal of the switching FET. From Fig.

5.5, there are two main findings. Firstly, the oscillation cycles at the operational amplifier’s output

have a slight DC offset (due to the amplification) and secondly, the number of oscillation cycles

are fewer than at the input. Experimental measurements have shown that the gate capacitance of

the switching FET requires about 2-3 µs to charge. Correspondingly, it was expected that the first

oscillation cycle was completely used for charging the gate capacitance at the FET and then the

rest of the pulsed signal appears at the load. Besides this, the gain and the design of the opamp’s

feedback loop are important contributing factors towards suitable biasing and stable operation of

the switching FET. For improved operations, different switching FET’s with lower gate capacitance

or efficient gate drivers might be selected. At the same time, the bias conditions of the FET should

be such that it operates as a switch and causes minimal loading at the opamp’s output. In this

design, a 2.7 V zener diode was connected at the opamp output to provide certain amount of pre-
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biasing voltage to the switching FET’s gate and thus ensure rapid turn on time for the switching

FET.

For the FET to operate as a switch, we require sufficient gate and drain voltage ensuring that

it is biased into the saturation region. Consequently, the use of the opamp at the input of the

switching device is vital to ensure that the impedance of the delay line doesn’t affect the bias state

of the switching FET. From Fig. 5.5, it was observed that a major consideration for FET operation

would be the stable operation of the opamp. Incorrect biasing of the switching FET could lead to

severe loading effects and unstable oscillations at the output of the opamp. This implied that a

careful design of the feedback loop was required to ensure that pulsed sinusoidals may be obtained

at the output.

An inductive load of approximately 0.1 µH was connected to the drain terminal. The output

corresponding to a 5 V bias signal can be observed in Fig. 5.6. Here it is observed that the pulsed

variations appear with a DC offset equivalent to the voltage applied at the drain terminal. However,

the rate of change of voltage with time or repetition frequency is too fast to obtain a voltage swing

from 5 V to 0 V. This observation implies that further modifications to the bias condition of the

FET are needed to improve its operations as a switch. The drain and source voltage follow the

modulation at the gate. A resistor and diode are connected in parallel across the inductive load

for a discharge path once the switching FET is turned off. This combination also curbs spurious

ringing. A current sense resistor of 10 Ω was connected at the source terminal to estimate the

current through the inductor.

5.4 Modifications to the operational amplifier

The selection of the opamp plays an important role in the stability of the switching FET. The

opamp also determines the maximum frequency and switching rate for the signal applied to the

gate. This is because the gain bandwidth product of the opamp limits the maximum operational

frequency while the slew rate determines the rate of switching.
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5.4.1 Simulations with various opamps

In the first iteration, an opamp with a gain bandwidth product of 75 MHz and a slew rate of 5 -

45 V/µs was selected. This selection limited the operational frequency of the device to a maximum

of 0.7 MHz for an opamp output voltage of 10 V. Non-linear distortions would occur if the opamp

was operated beyond its designated operational range due to slew-rate limiting. This is observed

via simulations in Fig. 5.7.

(a) Opamp Input (b) Opamp Output (c) Gate Input

(d) Drain Terminal (e) Inductor current

Figure 5.7: Simulated signals for opamps with different slew rates

A 5 MHz, 2.5 V sinusoidal signal, as observed in Fig. 5.7a, was applied to the non-inverting

terminal of the operational amplifier. The applied signal was amplified and further applied to the

gate terminal of the switching FET. As observed in Fig. 5.7b, LM 6152 is unable to respond at a

frequency of 5 MHz. While the response of the other two opamps ( LM 6171 and LM 7171) displays

sharp rise and fall times, neither of them are affected as drastically as the opamp, LM 6152. Since
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Figure 5.8: Schematic of opamp loop

the gate voltage, Fig. 5.7c, is higher than the threshold voltage for the switching FET, the FET is

in saturation and current flows through the inductor. While high currents can be obtained using

LM6152, Fig. 5.7e, repetitive and continuous current can be obtained using LM6171 and LM

7171 respectively. It must be noted that simulations were performed with a continuous sinusoidal

waveform instead of a pulsed sinusoidal input at the opamp’s input due to software limitations.

Based on these simulation results, experiments were performed using LM 7171 and the results are

reported in section 5.5.

5.4.2 Stability of opamp

Since the opamp is responsible for appropriate bias of the FET and maintaining the overall

stability of the output signal, it is necessary to understand its operation. As seen in Fig. 5.8, the

voltage at the opamp output should be sufficient to overcome the gate threshold voltage and drive

the FET into saturation.
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Here, V− is the voltage at the inverting terminal, V+ is the voltage at the non-inverting terminal,

V0 is the voltage at the opamp output, Vc is the voltage drop across the current sense resistor, Vgs

is the gate to source voltage, Rf1, Rf2 are the feedback resistors. Using node voltage at node V−,

V0 − V−
Rf1

=
V− − Vc
Rf2

(5.3)

V0 = V− +
Rf1
Rf2

(V− − Vc) (5.4)

V0 = V−

(
1 +

Rf1
Rf2

)
− Vc

(
Rf1
Rf2

)
(5.5)

Assuming that the FET is biased into saturation, the drain current would be equal to the source

current. Then, assuming that almost all the source current flows into the current sense resistor,

Rc, and hardly any current flows into Rf2, at node Vc, thus,

Vc = IdsRc (5.6)

The drain current can be approximated to be

ID = gm(Vgs − Vt) (5.7)

where, gm, is the transconductance parameter, Vgs is the gate to source voltage and Vt is the

threshold voltage. From the datasheet, gm was estimated to be equal to 30 and the threshold

voltage was 3 V. Therefore,

Vc = 30(Vgs − 3)Rc (5.8)

Assuming the voltage drop across the 50 Ω resistor to be negligible, equation 5.8, can be written as

Vc = 30(V0 − Vc − 3)Rc (5.9)

After simplification,

V0 = 3 +
Vc(1 + 30Rc)

30Rc
(5.10)

Substituting equation 5.10 into equation 5.5, we obtain,

V−

(
1 +

Rf1
Rf2

)
= 3 + Vc

(
1 + 30Rc

30Rc
+
Rf2
Rf1

)
(5.11)
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Substituting values in equation 5.11 and after further simplifications,

V0 = 1.65V− + 2.95 (5.12)

While the opamp tries to minimize the voltage difference between the non-inverting and inverting

terminal, equation 5.12 is written as

V0 = 1.65V+ + 2.95 (5.13)

In summary, the presence of multiple feedback paths controls the maximum output voltage at

the opamp and prevents the opamp from being an unstable oscillator. For experimental measure-

ments, the phase of V+ or the input signal, needs to be set to -90◦ to ensure the opamp’s stability

of operation.

5.4.3 Measurements for opamp loop

To ensure stability of the opamp loop, measurements were performed for the opamp and the

switching device. An input pulsed sinusoidal signal, with an amplitude of 2.5 V was applied to the

non-inverting terminal of the operational amplifier. The output stage of the opamp was connected

to a 50 Ω resistor which was further connected to a 2.7 V zener diode ensuring approximately 2.7

V pre-bias voltage at the gate of the switching FET for rapid start of the switching FET. A 100

nH planar inductor was connected to the drain terminal which was held at a bias voltage of 10 V.

A 1 Ω current sense resistor was used instead of the 0.05 Ω resistor shown in Fig. 5.2.
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(a) Gate (b) Drain

(c) Source

Figure 5.9: Voltage measured at different terminals of the switching FET for different operational

frequencies

Fig. 5.9 includes representations of the voltage at the gate, drain and source at frequencies

of 500 kHz, 1 MHz and 5 MHz respectively. While a certain amount of signal ringing exists at

each of these frequencies, it is observed that at lower frequencies, ringing persists. Based on these

observations, a 33 V zener diode was added to the inductor’s feedback path to obtain rapid ringing

decay.
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5.5 Experimental results at an operational frequency of 5 MHz

The designed circuit as seen in Fig. 5.10, was tested in different stages. The response of the

input circuit was tested at various operational frequencies similar to the opamp loop described in

section 5.8. The current through the inductor obtained on combining all the design stages can be

observed in Fig. 5.11. It is observed that the ringing in the current is much lower than the voltage

ringing observed for the switching FET as seen in Fig. 5.9. Once the gate terminal of the switching

device is active, based on the selected current sense resistor and the applied drain voltage, the

current through the inductor can be tuned further. Therefore, in Fig. 5.11, the units for current

are arbitrary. In summary, assuming the inductor as a solenoid with 10 turns, length of 0.01 m and

a current of 10 A, B1 of 0.01 T can be obtained.

Figure 5.10: Designed prototype circuit board
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Figure 5.11: Current measured through the load, reported in arbitrary units

5.6 Conclusions

Through this work the design, development and operation of a pulsed magnetic field generator

using a fast switching FET were observed. The design process reveals that the feedback loop of the

opamp needs to be tuned to ensure required pulsed currents. At present, the opamp loop is tuned

to a small gain and a small capacitive bank (100 µF) is used at the drain. Approximately 0.5A of

current is flowing through the 10 Ω current sense resistor at an operational frequency of 0.5 MHz.

At 5 MHz, approximately 10A of current can flow through a 100 nH inductor with appropriate

tuning of drain voltage and current sense resistor. However, higher currents might be achieved by

reducing the value of the current sense resistor and applying a higher drain voltage. By using the

designed circuit and careful control of the feedback system a stable pulsed field can be generated

in contrast to the prior FET based field generator [100]. Potential non-linearity may be introduced



www.manaraa.com

75

due to the slew rate, gain bandwidth and loading of the operational amplifier. These non-linearities

can affect the operation of the pulsed sinusoidal and thus the bias-conditions of the switching FET

and impedance loading effects of the opamp need to be closely examined in future magnetic field

generators.

5.7 Avenues for improvement

The improved pulsed field generator successfully eliminates the loading effect between the

switching stage and the delay line. However, other attributes such as gate capacitance of the

switching FET, higher switching frequency, opamp stability and obtaining biphasic pulsed fields

need to be considered. Modifications to the existing monophasic field generator and an alternative

design for biphasic operations is discussed in the following section.

In summary, the designed pulsed field generator can be used to create pulsed currents and

correspondingly pulsed magnetic fields. While these parameters are sufficient for the application

of low-field unilateral NMR, further investigations on the effect of the inductive load on the pulsed

signal shape and recovery would lead to improvements in the design of the inductive load. In

turn, these would make the circuit design applicable to a wider number of pulsed systems. In

particular, the coil design could be improved to incorporate transmission to larger distances and

simultaneous transmit/receive capabilities. In addition, better mechanisms need to be developed

to ensure proper bias conditions for the switching FET and to minimize the loading effects at the

output of the operational amplifier.

5.8 Towards a biphasic field generator

Biphasic field generators surpass monophasic field generators in terms of maximum achievable

magnetic resonance signals. This is because biphasic field’s can initiate NMR spin transitions for

magnetic moments which are aligned or unaligned with the applied magnetic field, thereby leading

to twice the amount of NMR signal expected using a monophasic field generator. The design of the

proposed biphasic field generator is comparable to the monophasic field generator described in this
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chapter. An additional switching device is included to obtain operations during the negative half

of the pulsed sinusoidal. The two switches can be connected to a set of intertwined inductors with

only one inductor activated at a particular point of time. Biphasic operations may also be obtained

by using two identical switching devices with coils wound in opposite directions. However, this

design presented several challenges in early tests and iterations and wasn’t pursued further. The

biphasic generator described in this work is simulated to obtain a maximum of +/- 50 A through

the inductor at operational frequencies upto 3 MHz.

5.8.1 Proposed designs

As described in the previous section, the design of a biphasic field generator involved inclusion

of an additional switching device which could respond to the negative half of the sinusoidal signal.

A pulsed sinusoidal input, as described in prior work [111], was used at the input of an operational

amplifier. Two different switching configurations were simulated. In configuration A (Biphasic A)

, Fig. 5.12, a common pulse forming network was used to apply a sinusoidal signal at the gate of

a n-type (Q1) and a p-type (Q2) switching device. In configuration B (Biphasic B), Fig. 5.13, two

different pulse forming networks with phase offsets were utilized alongside the switching devices. A

pre-bias voltage was applied at the gate terminal of each switching device to pre-charge the input

gate capacitance for each switching device. In each configuration, the inductors were intertwined

and a shunt diode and resistor were used to dampen ringing once the gate signal was turned off.

5.9 Simulation results and discussion

Fig. 5.14 and Fig. 5.15a represent the current through the inductor for configurations A and

B respectively. The two configurations produce comparable currents. An initial overshoot occurs

in the current produced by the n-type device due to the pre-biasing circuit used at the switching

device. The exact opposite effect is observed at the p-type device with minimal current during the

first cycle. After the initial overshoot, the positive current stabilizes at approximately 40 A while the
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Figure 5.12: Biphasic field generator: Configuration A

negative current stabilizes at approximately 52 A. Between the two configurations, in configuration

B, the peak current for the positive and negative half cycle are comparable (approximately 40 A).

The rise and fall time of the switching device also impact the operations in both the configura-

tions. The effect of rise and fall time is apparent for configuration B once the operational frequency

is increased to 2 MHz as seen in Fig. 5.15b. Here, it is observed that with an increase in operational

frequency the maximum pulsed current obtained reduces. Moreover, due to the variable rise and

fall times for two switching devices, there is a period of overlap when both the waveforms overlap.

With a further increase in operational frequency, the overlap becomes more prominent. Thus, the

phase offset needs to be controlled diligently in configuration B. Additionally, the initial oscillation

cycle isn’t obtained for the p-type device due to delayed activation of the gate terminal. Meanwhile,

for configuration A with an increase in operational frequency, once the two signals overlap, both
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Figure 5.13: Biphasic field generator: Configuration B

the inductive coils would be activated and the net magnetic field would be reduced. Therefore,

configuration B with suitable phase control is preferred for operations at higher frequencies.

Lastly, in both monophasic and biphasic configurations it is observed that with an increase

in operational frequency, the peak current decreases. In order to obtain high current at high

frequencies, switching devices with faster rise and fall times need to be selected. Alternatively, the

duty cycle of each pulse needs to be reduced to obtain higher currents for shorter intervals.
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Figure 5.14: Current through inductors in configuration A at a frequency of 1 MHz

(a) 1 MHz (b) 2 MHz

Figure 5.15: Current through inductors in configuration B at a frequency of 1 MHz and 2 MHz

respectively

5.10 Comparisons between different field generators

The main parameters that are considered in the design of both the monophasic and biphasic

pulsed field generators are summarized in Table. 5.3. The extension of the design from monphasic

to biphasic involved modifications to the switching device, load and pulse forming network. As seen
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in Table. 5.3, the monophasic field generator has the highest operational frequency and current. In

the biphasic configurations, carefully intertwined coils, selection of fast switching devices and coor-

dination of operational amplifiers used within the pulse forming network is required. Additionally

to obtain higher currents at higher frequencies, the duty cycle of the applied input pulse needs to

be controlled.

Table 5.3: Comparison of parameters significant for design of monophasic and biphasic field gener-

ators

Parameter Monophasic Biphasic A Biphasic B

Frequency Upto 8 MHz Upto 3 MHz Upto 1 MHz

Current Upto 50 A 20 - 50 A Upto 40 A

Coil Arrangement Single Intertwined Intertwined

Feedback Loop Present Present Absent

Drain voltage 15V 15V 15V

Input Sinusoidal 2.5V 2.5V 2.5V

Phase Offset Not Applicable Necessary Not Applicable

5.11 Summary

The development from a monophasic to biphasic field generator requires several design modifi-

cations to the pulse forming network, switching device and load. Modifications at each stage were

examined and changes were implemented for the switching device to extend the monophasic oper-

ations for biphasic field generators. The present design iteration revealed that while monophasic

field generators could operate at higher frequencies (upto 8 MHz), biphasic field generators which

shared the pulse forming network were unable to operate at frequencies above 2 MHz. Moreover,

the rise and fall time of the switching devices would significantly affect the biphasic system per-

formance at higher frequencies. In summary, different aspects of the switching device, load and

operational frequency need to be considered to obtain stable biphasic pulsed magnetic fields.
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5.12 Future work

Monophasic and biphasic field generators both find their place and utility in different magnetic

resonance applications. A significant challenge identified through this work is the difference in the

rise and fall-time characteristic of the different switching devices. While this is expected, in the

case utilizing two different pulse amplification stages, coordinating the triggering between the two

switching devices is a challenge. A few possible ways of overcoming this challenge may be use

of similar switching devices with different load configurations or isolated pulse switching stages

triggered on or after the signals have completely decayed. Operations at higher frequencies also

remains a challenge that requires further work in design of the pulse generation and switching

mechanism.
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CHAPTER 6. STUDIES AND MEASUREMENTS ON FERROMAGNETIC

MATERIALS

Materials placed in a combination of a static and a pulsed magnetic field can produce various

signals. As described in chapter 3, when static fields pass through ferromagnetic materials the

spatial distribution of magnetic flux is concentrated within the material. This observation suggests

that when pulsed fields are applied to ferromagnets placed in static fields, the response from the

material’s state of magnetization will be captured in the recorded signals.

In this chapter, signals obtained from ferromagnetic materials placed in the presence of a

cuboidal permanent magnet and pulsed with a Magritek Kea system are studied. Measurement

results show that the variation in bulk magnetization of the ferromagnetic materials, affects the

state of magnetization and the corresponding signal response. Here, signals from inductive sensors

comprising of ferromagnetic cores, used for oil well logging are examined. These signals are often

described as ringing since they interfere with the intended measurements. Since ferromagnetic cores

are typically used to enhance signals received from external media in unilateral NMR applications,

a study of the signal response from such magnetic cores is vital.

Through this study, the interaction between the ferromagnetic material and pulsed magnetic

field is studied. The effects of varying magnetization are highlighted. Based on the magnetic

core’s geometry and dimensions, effects due to non-linear magnetization may be mitigated. This

chapter also demonstrates and discusses ways of controlling ringing by considering interrelationships

between different factors such as inductance, magnetic permeability and quality factor.

6.1 Introduction

The phenomenon of nuclear magnetic resonance (NMR) is widely used to study different mate-

rials through NMR spectroscopy. Magnetic inductive sensors are being used for generation and/or
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detection of magnetic fields in varied applications inclusive of magnetic resonance imaging, nonde-

structive evaluation, proximity detection etc. Inductive sensors used in oil well logging instruments

can detect the presence of oil/water in earth formations using NMR. NMR measurements are thus

an important part of oil well logging and are used to identify and quantify oil and gas reservoirs.

For these measurements an ‘inside-out’ approach is employed [67]. NMR well logging uses the NMR

response of an earth formation to determine its porosity and permeability. A continuous record is

obtained along the length of a borehole in operation. The inductive sensor used for this application,

acts as both a signal transmitter and receiver and at the same time contributes its own intrinsic

signal to each measurement. Often, this contribution can mask the actual measured signal. For

such applications it is thus vital to determine the signals contributed from the inductive sensor.

The NMR equipment used for oil well logging comprises of a large static magnetic fields, gen-

erally produced by permanent magnets, and a high frequency oscillatory magnetic field projecting

outwards from the core of the test apparatus. The two magnetic fields, interact with the sur-

rounding media and the received signal is then studied to determine the porosity and hydraulic

permeability of the media. Unlike conventional NMR systems, inside-out NMR measurements are

conducted at resonant frequencies below 2 MHz [112]. The weak nature of the static magnetic

fields employed [67] makes it difficult to observe the chemical shifts and hence most of the signal

information is obtained from the relaxation data or the free induction decay (FID) signal. Oil well

NMR tools are also used to conduct NMR measurements within the ground and the received signals

can be analyzed in-situ or once the tool is brought to the surface. Thus, these tools require the

lowest FID time to maximize the number of measurements and attain a higher signal to noise ratio

(SNR).

6.1.1 Relevance to oil well logging applications

In particular, the focus of this chapter is on inductive sensors utilized for 'inside-out'[113] nuclear

magnetic resonance (NMR) applications such as oil well logging. The inductive sensor used for this

application is a combination of a magnetic core and an inductive coil placed in an external static
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magnetic field. In particular the magnetic core enables generation of a higher magnetic flux within

and in the surrounding media thereby allowing for improvements in measured signal to noise ratio

(SNR).

In oil well logging applications as discussed before, the inductive sensor plays a dual role,

acting as a transmitter for the excitation signal and also as a receiver for the response from the

surroundings. The transmitter frequency is selected as the precession frequency of the material

under test such that all the magnetic moments in the area surrounding the sensor oscillate at the

applied frequency. Once the signal is switched off, the magnetic moments revert back to their

original direction of magnetization. It is essential that the signal (termed as free inductive decay

(FID)) generated when the magnetic moments are returning to their original magnetized state is

accurately captured by the inductive sensor. This is because unlike conventional NMR systems,

“inside-out” NMR measurements are conducted at resonant frequencies below 2 MHz, under low

static magnetic fields [112, 113]. Instead, inside-out NMR systems acquire multiple samples and the

measured signals are ensemble averaged to obtain a good estimate of the FID. Multiple acquisitions

also facilitate improvements in SNR.

6.1.2 Limitations to oil well logging measurements

It is well understood that besides the surrounding media, the magnetic core material used within

the inductive sensor is also magnetized and reverts to its original state of magnetization once the

magnetization pulse is removed. It is observed that under most circumstances the signal generated

by the magnetic core overlaps with the signal received from the surrounding media and this is

detrimental in conducting rapid/multiple measurements [114]. It is thus required to minimize the

interference (ringing) [70, 115, 116] generated due to the magnetic core in order to significantly

reduce the dead time of the receiver [117, 118] in typical oil well logging applications.

Previous work [119, 120, 121, 122, 123, 124, 125, 126, 127] like using a Q switch, transformer-

coupled matching networks, snubber circuits highlights several techniques that have been employed

to mask the inductive sensor signal. However, masking the signal still doesn’t allow the user to
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conduct rapid/multiple measurements and thus several considerations need to be made to achieve

minimization of the FID signal. Firstly, the magnetic energy within the magnetic core material

must be quickly dissipated or absorbed in order to minimize the contribution of the core to the

response signal. At the same time, the inductive sensor should have a high sensitivity to the

signals received from the surrounding media and the response of the sensing coil must be selective.

A combination of these two factors can lead to improved NMR measurements in oil well logging

applications.

6.1.3 Ringing effects and FID

RF pulses are repeatedly applied to the test sample and the signal received during this time

is know as the Free-Induction Decay (FID). It is found that the magnetization doesn’t precess

indefinitely and the spins return back to their original state after removal of the RF pulse. This

phenomenon is known as relaxation. Two time constants, T1 and T2 are used to describe this

behavior. T1 corresponds to the gain and loss of magnetization along the direction of external

magnetic field. T2 or the damping time constant corresponds to loss of phase coherence among the

nuclei or the loss of magnetization along the direction of the orthogonal RF field. Mathematically,

T2 is related to the linewidth (∆ν1/2) of the signal through the relation

∆ν1/2 =
1

πT2
(6.1)

Loss of magnetization energy in the direction of the static field or along the RF field would be

equivalent i.e. reduction of T1 (or T2) would lead to faster signal magnetization and faster signal

acquisition [126].

In this study, the FID signal is characterized as ringing since the test specimen is considered to

be the magnetic core within the coil. This ringing effect caused by the core and coil combination

may lead to erroneous measurements due to emergence of false resonant peaks. The ringing in

pulsed NMR systems can be attributed to several sources such as acoustic ringing [128], eddy

current damping effects [129], magnetostriction effects [128], material related effects, and circuit
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Figure 6.1: Schematic representation of measurement system. The pulsed sinusoidal is generated

by the pulse generator, amplified by the power amplifier, filtered and applied to the inductive

load. Signals are received at the duplexer after a 100 µs delay, amplified and processed at the data

acquisition unit. The shielding box encloses the magnetic core and the external bias magnet.

and sensing system designs [126]. Isolating the contributions of the different causes is necessary to

understand and systematically decrease or eliminate the detrimental effect of ringing.

6.2 Experimental Details

Measurements were conducted using commercially available magnetic core materials. Different

materials with relative permeability: Mu 55, Mu 100, Mu 125, Mu 1200 were selected. The NMR

measurement set-up comprises of several units: a Magritek Kea system, high-power RF amplifier,

signal duplexer and an inductive antenna/coil. A system level representation can be found in Fig.

6.1.

The user enters several parameters through a menu-driven program and activates the Kea

system which generates an RF pulse with a maximum output power level of 1 mW. The amplitude

and phase of this signal are controlled by the inbuilt digital signal processor. The generated signal
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is then sent to the high-power RF amplifier and is amplified upto a maximum power level of 4000

W and passed on to the duplexer. The duplexer serves a dual function. It allows the high-power

signal to reach the antenna and blocks it from reaching the Kea system thus preserving it from any

damage. A TTL signal ensures coherence between the signals from the spectrometer, amplifier and

duplexer. The RF pulse is then applied to the antenna. Initially a short pulse of duration 20 µs

is selected in order to obtain a larger frequency bandwidth. Once the peak signals are identified,

selective pulses of approximately 200 µs are applied at those frequencies. The pulses from the

receiver are acquired with a delay of 400 µs to allow the amplifier signal to switch off. The received

signal is once again re-routed to the Kea system via the duplexer and a pre-amplifier. The free

inductive decay signal can then be analyzed. The system-level timing is illustrated in Fig. 6.2. A

permanent magnet with a field strength of 400 G is used to generate the static magnetic field.

Figure 6.2: System Timing diagram. A sinusoidal pulse train is transmitted for a duration of 200

µs and the signal at the receiver is recorded 400 µs after the pulse is turned off. The received signal

is described as the FID.

Since the acquired signal is weak, measurements were repeated every 500 ms in order to improve

on the signal to noise ratio (SNR), and the signal was averaged over 64/128 measurements. The am-

plitude and position of the signal repeat while the stochastic nature of noise makes it unrepeatable

at the same location after each iteration.
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6.3 Responses from the magnetic core materials

The inductive core material dominates the signal response. As seen in Fig. 6.3, with an increase

in the material permeability, the inductance increases. Initial measurements indicated that that

higher permeability materials also resulted in higher ringing and multiple resonant frequencies.
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Figure 6.3: Inductance vs Permeability. Inductance was measured using an LRC meter in the

10kHz frequency range. Relative permeability was estimated from the manufacturer specifications.

6.3.1 Quantification of Ringing

The damped nature of the signal allows us to propose a figure of merit (FOM) that could be

utilized to quantify the ringing. As illustrated in Fig. 6.4, the FOM can be mathematically defined

as

FOM =
V1 − V2

V0(t1 − t2)
(6.2)

where V1 is the original signal amplitude at time t1 once the RF pulse is suspended, V2 is the

amplitude of the FID after time t2 and V0 is equivalent to the initial ringing amplitude. The

difference between t1 and t2 was selected to be equal to 1 time constant though a decay by 5 time

constants is a better approximation since it accounts better for complete signal decay. For this

study, the proposed FOM may be used to compare the ringing from different magnetic materials.
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Figure 6.4: Figure of Merit. V1 was considered to be the same as V0. ∆t = t1 - t2 was considered

to be one time constant.

6.3.2 Effect of material on signal decay time

The pulse frequency is swept over a frequency range of 0.1 to 1.4 MHz and the corresponding

resonant frequencies are recorded for each ferromagnetic material. The FID for each of these

frequencies was estimated using an exponential fit. In order to observe the effect of material on

the signal damping, the FID signals are compared at a frequency (fo) of 152 kHz for all materials

except Mu1200 which indicated resonance at a frequency of 140.5 kHz. This frequency may be

considered an indication of the circuit resonance. A comparison of the signal decay time can be

found in Fig. 6.5. The ringing signals were fitted using varied exponential functions. The decay

time was computed in each case and the line width was approximated from the Fourier spectrum

of the signal. The results are summarized in Table. 6.1.

Table 6.1: Comparison of magnetic materials at single frequency

Material Initial Ringing Approx Decay Approx Line

Amplitude (| µV|) Time (ms) Width (Hz)

Coil Only 0.57 - 346.19

Mu55 2.518 9.034 307.3

Mu100 3.95 16.9 277.6

Mu125 27.03 0.2 403

Mu1200 5048 3.278 293
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Figure 6.5: Signal decay profiles. Decay times were estimated from the exponential fits. The decay

time was approximated when the signal had decayed by one time constant or 0.37 of its original

value

For a typical FID signal, the initial signal amplitude may relate to the permeability of the

material as seen in Fig. 6.5. This signal will completely mask the NMR signal due to high ringing

amplitude. Thus, high permeability materials or impregnated materials may not be good candidates

for the magnetic core in the inductive antenna. This leads to a trade-off since it is necessary to

use a high permeability core material in the NMR tool to allow maximum flux penetration in the

surrounding earth.

For a typical FID signal, the signal decay time also provides information about the texture and

the type of fluid in an NMR application. It is observed that with a decrease in the porosity of the

core material, as in the case of Mu125 (impregnated material), the ringing amplitude decreased

and there was a significant reduction in the signal decay time.
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6.3.3 Effect of material on Q-factor

With an increase in inductance, the quality (Q) factor directly increases. A Q factor above 0.5

corresponds to an under damped circuit oscillation. The single-sided frequency spectrum of the

time-domain signals is observed in Fig. 6.6. The frequency spectrum is shifted such that the center

frequency at the origin corresponds to the resonant frequency of 152 kHz and 140.5 kHz for Mu1200.

The center frequency for Mu1200 is offset by approximately 0.2kHz. Materials with a greater line

width indicate correspondingly wider peaks in the frequency spectrum and lower Q factors. From

Table. 6.1 it was found that Mu125 has the highest line width and correspondingly lowest decay

time. The FOM was found to decrease with an increase in signal decay time as observed in Table.

6.2.

Table 6.2: Comparison of magnetic materials at single frequency

Material Inductance Quality FOM

(µH) factor (Hz)10−3

Coil Only 1.41 13.85 -

Mu55 5.47 45.84 0.0697

Mu100 6.525 50.71 0.0372

Mu125 6.798 52.36 3.15

Mu1200 10.59 52.28 2.1141
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of each material
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The magnetostrictive effects were also investigated for the soft magnetic materials used as the

cores. It was found that around 400 G field, the materials under test had already saturated and

there was no change in the strain of the sample. Thus, at the operating DC magnetic field strengths

of NMR the materials will not show any changes in strain.

6.4 Conclusions

This study shows that application of pulsed magnetic fields to pre-magnetized ferromagnetic

materials leads to specific material dependent responses. In particular it is observed that certain

soft magnetic materials greatly affect the free inductive decay observed in pulsed NMR systems.

This signal interference due to the material’s state of magnetization leads to an increase in signal

decay time and in turn increases dead time in the receiver. Among the materials tested, it was

found that despite their high permeability, Mu125 and Mu1200 had significantly shorter decay times

compared to Mu55 or Mu100. Mu125 displayed the lowest signal decay time. However, the sample

may also mask the actual NMR signal due to its high initial ringing amplitude. The observations

made in this study indicate that further work on design and selection of appropriate magnetic

core materials, including properties of custom designed materials, would facilitate development of

a mechanism for controlling the ringing effects in NMR systems.
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CHAPTER 7. FREQUENCY AND TEMPERATURE DEPENDENT

MEASUREMENTS ON FERROMAGNETIC MATERIALS

As seen in chapter 6, ferromagnetic materials respond to pulsed magnetic fields at particular

frequencies. Therefore, the focus of this chapter was to systematically identify and locate signal

responses/ringing over a frequency span of 0.1 - 1.4 MHz and identify the sources of signal ringing.

Resonant peaks that originate due to multiple factors such as NMR, electrical, magneto-acoustic,

core material response, eddy currents and other factors were observed and the frequency dependent

signal was analyzed in order to identify a suitable magnetic core. From the frequency dependent

signal measurements, Mu 125 was identified as a suitable magnetic core for inductive sensors due to

its lower signal amplitude and shorter decay time at each resonant frequency. Since the magnetic

cores used for well-logging contribute to improvements in SNR, it is beneficial to have a core

with high initial permeability, lower eddy current losses i.e. lower coercivity and higher saturation

magnetization.

7.1 Experimental setup

As described in chapter 6, the experimental setup includes a pulse generator (Magritek Kea

system), a high power amplifier, a duplexer and a software processing unit. A pulse train with

a maximum signal power level of 1mW (−10 dBm) is generated using the Kea spectrometer. A

simplified schematic of the measurement process is depicted in Fig. 7.1.

The generated pulse is sent to a high power amplifier where the input signal may be amplified

to a maximum power level of 4kW (66 dBm). The amplified signal is routed on to the duplexer that

acts like a band pass filter and then to an inductive coil where the sample/magnetic core is placed.

The sample coil is a solenoid with inner diameter of 25.4 mm, length of 100 mm, consisting of 30

turns of magnet wire wound around a plastic case. The self-inductance of the coil is approximately
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Figure 7.1: Simplified measurement process. (a) A pulsed sinusoidal is applied to the inductive coil.

The magnetic core is placed within this coil and an external magnetic field (400 Gauss) is applied

using a permanent magnet. (b) At resonances a decaying exponential signal ((c) corresponding

peak in frequency domain) is observed.

5-10 µH. The sample’s size is approximately 100mm × 10 mm × 10 mm. Multiple excitation pulses

are applied to eliminate the presence of noise in the recorded signal and obtain a high SNR. After

each excitation pulse, the signal from the sample is rerouted via the duplexer to the receiver unit.

The received time domain signal is then transformed to the frequency domain and a broad pulse

is applied at each resonant peak to determine if the resonant peak oscillations (ringing) occurs due

to the magnetic material or the circuit [130]. An initial assumption made for this study is that

the inductive coil doesn’t receive any extraneous signals from the surroundings and only receives

signals from the material inside the magnetic core.



www.manaraa.com

95

7.1.1 Signal amplitude

The peak signal amplitude is used to determine the maximum amplitude of the resonance from

the magnetic core at a particular resonant frequency. A lower amplitude is preferred for minimal

overlap between actual NMR signals and signals induced due to the magnetic core.

7.1.2 Linewidth

The peak resonant linewidth is a key measure of the signal decay time. It is desirable that

signals from the magnetic core decay quickly, thus limiting the interference with NMR signals from

samples under test. If the linewidth, defined as in equation 6.1, or the 3dB bandwidth, is wider, the

signal decay would be faster. Correspondingly, the signal quality factor at each resonance would

be lower. Also, a higher coercivity leads to a narrow linewidth and is not desired.

7.2 Frequency dependent measurements

The response of the inductive sensor is affected due to the variable magnetization of the magnetic

core material [131]. Based on our observations, it was expected that the measured signal response

included contributions due to variable magnetization of the core and the measurement system. In

general, it was expected that the signals introduced due to the system will occur at the input

signal frequency and harmonics of the input signal frequency. Besides these signals, other signals

appeared due to the presence of the magnetic material used as the magnetic core. These signals

are assumed to originate due to the non-uniform magnetization and different relaxation times of

the magnetic moments within the magnetic core material. In some cases the presence of pinning

sites and imperfections within the material may also contribute to occurrence of such signals.

To evaluate the effect of magnetic material on the sensor response, several measurements with

different magnetic core materials were performed. The measurements were conducted over a fre-

quency range of 0.1 to 1.4 MHz due to the broadband capabilities of the NMR tools. The signal

response for each material were identified by first applying a short pulse of 20 µs and then applying
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a broad pulse of 200 µs. The short pulse was applied to scan a broad frequency range and then

once the signal frequencies were identified a broader pulse was applied at those specific frequencies.
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Figure 7.2: Comparison of signal amplitude for different magnetic materials. A log scale is used for

improved readability. The materials are labeled according to their relative magnetic permeability.

The signals measured from the core and coil assembly may be quantified using two parameters.

The first parameter is the peak signal amplitude at each peak frequency. A lower peak signal ampli-

tude is desired since this would imply lower response from the magnetization state of the magnetic

core material. The second parameter of interest is the linewidth (full-width half maximum) at

each resonant peak. A higher linewidth would imply a faster signal decay at each resonance and is

preferred. Fig. 7.2 is a comparison of the peak signal amplitudes for each material, acquired after

the 200 µs pulse at corresponding resonant frequencies. The peak amplitude is recorded from the

frequency spectrum profile for each material.
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As a direct follow through of Faraday’s law, equation 7.1, it was expected that the peak signal

amplitude at each resonance would be directly proportional to µr of the material.

Vemf = −N d(B.A)

dt
−Nµ0µr

d(H.A)

dt
(7.1)

(here N is the number of turns in the pick-up coil, B is the magnetic flux density, A is the area of

one turn of the coil and dt corresponds to increment in time, µ0 is the permeability of free space,

H is the magnetic field strength applied to the coil). However, on closer examination of the peak

signal amplitudes, Fig. 7.2, it was found that the relationship between the signal amplitude and

permeability wasn’t linear. In fact Fig. 7.2 indicated that Mu 340 which has a relative permeability

much lesser than Mu 1200 has a higher peak signal amplitude. At the same time, Mu 225’s peak

signal amplitude is lower than Mu 55. These observations clearly imply that besides the relative

amplitude the signal amplitude is dependent on some other factors. Next, taking into account the

magnetization of the magnetic core due to the excitation signal the total magnetic flux described

by equation 7.2:

B = µ0(M +H) (7.2)

can be incorporated into equation 7.1. Thus, the induced emf may be written as in equation 7.3,

[98]:

Vemf = −µ0N

(
A
dM

dt
+M

dA

dt
+A

dH

dt
+H

dA

dt

)
(7.3)

Then from equation 7.3, one may infer that the induced emf would be dependent on the rate of

change of magnetization, applied field and the rate of change of area of the coil. The change in mag-

netic field would be steady (since the pulsed signal is sinusoidally varying) over the pulse duration

and discontinuous at the start and stop of the pulse. At the same time, on application of magnetic

field, the dimensions of the magnetic core material may slightly vary due to magnetostrictive effects

. However, the changes in area would be in the range of 10−10 and the induced emf is measured to

be in the range of 10 - 10000 µV. Thus, the contributions of magnetostriction to Vemf are negligible.

On further evaluation, comparing the variations in signal amplitude of the low permeability

materials, Fig. 7.3a, it is found that they have relatively lower number of resonances in contrast
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Figure 7.3: (a) Comparison of low µr materials, (b) Comparison of high µr materials

to the higher permeability materials, Fig. 7.3b. At the same time Fig. 7.3a shows that besides

having low peak amplitudes (approximately 45 µV) certain resonant frequencies repeat irrespective

of the material permeability (In particular, 690k, 1.04M Hz). However from Fig. 7.3b it is observed

through experiments that these peaks don’t repeat for the high permeability materials. While the

ability to observe the resonant peaks does depend on the core material properties and the strength

of the external biasing magnetic field it is also possible that these repetitive peaks originate due to

structural/geometrical variations of the magnetic core material and require further investigations.

Besides controlling the peak signal amplitude and minimizing the number of resonances due

to the material, the second parameter of interest is the linewidth at each resonant frequency. To

minimize ringing it is important to obtain shorter FID such that the oscillations at a particular

frequency decay quickly. Fig. 7.4 is a comparison of the linewidth for the different materials. It is

found that in the lower frequency regime, Mu 125 has the highest linewidth and correspondingly

shorter decay time.

A better estimation of the signal decay rate at each resonant frequency may also be understood

by estimating the quality factor (Q factor). The Q factor is a representation of the net energy
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Figure 7.4: Comparison of linewidth at each resonant frequency measured over the operating

frequency range.

stored at resonance. It may also be used to determine the damping rate at each resonant frequency.

Generally, high Q factor systems have lower damping and ring for longer duration of time. Thus,

it is desired to have a system with lower Q factor such that the oscillations/ringing may die out

quickly. Mathematically, the Q factor may be estimated as a ratio of the resonant frequency to the

half-power signal bandwidth (FWHM). Fig. 7.5 is a comparison of the Q factor calculated for the

different materials. It is found that in the low frequency regime (below 400 kHz) Mu 125 has a

lower Q factor compared to the other materials. For all the other materials, the Q factor increased

with an increase in the signal frequency. In particular, in the higher frequency regime (above 400

kHz) the Q factor for Mu 1200 is the lowest. However, Mu 1200 has multiple resonant frequencies

and it is desirable to eliminate the resonances caused due to the material. For this reason the

properties of the magnetic material need to be altered.
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Figure 7.5: Comparison of Q factor over the entire frequency range.

7.3 Analysis on sources of resonant peaks

Prior results show that with frequency variations the response of the magnetic materials varies

non-linearly. This implies that besides the material’s magnetization, other factors for resonances

such as the measurement system and induced magnet vibrations need to be distinguished and

further analyzed. Since the resonances appear in every measurement, they are considered as in-

terference to signals received from the magnetic core. Forming a distinction between different

resonances is essential in identifying the primary contribution to the detected resonant signal. The

frequency dependent measurements for the magnetic core indicate that the magnetization induced

resonant peaks of the core have relatively higher amplitudes and shorter decay times at low fre-

quencies. However, it is apparent that signals can be misinterpreted if the origin of the signal is not

identified. Thus, to obtain a better understanding of the measurement it is necessary to distinguish

between signals originating from the magnetic core and signals arising due to variations in external
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magnetic field strength [23], induced eddy currents in sample/magnet [132], magnetization induced

vibrations [133, 134] in the magnetic core or some other factors.

7.3.1 Presence of magnetic vibrations

Prior works [134, 135] describe that variations in magnetization can lead to mechanical vibra-

tions in structures. These vibrations, often termed magneto-acoustic noise are dependent on the

magnetizing frequency [134] and the geometry of the sample. As per the experimental setup de-

scribed in section 7.1, it is expected that the magnetic core will experience vibrations in free space

and at the same time the magnet will also be influenced by the pulsed magnetic field. Mathemat-

ically, the resonant modes will occur when the length of the sample is a quarter wavelength for

a constrained sample and a half wavelength for an unconstrained sample. Higher modes can be

observed at integral multiples of quarter or half wavelengths respectively [134]. Thus, the nth har-

monic of resonant frequency for an unconstrained sample or the magnetic core in this experiment,

fs, is defined as [134]:

fs =
n

2l

√
E

ρ
(7.4)

Similarly, the nth harmonic of resonant frequency for the constrained magnet, fm, can be defined

as [134]

fm =
n

4l

√
E

ρ
(7.5)

Here l is the length of the sample, E is the Young’s modulus and ρ is the density of the material.

Equations 7.4 and 7.5, provide an estimation of the vibrational modes due to the magnetic core

and the magnet respectively. Since these resonant modes relate to the sample geometry and the

magnetizing frequency they may require longer time to decay and therefore they are detrimental

in on-site operations of such magnetic sensors.
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7.3.2 Preliminary observations

Figure 7.6: Representation of all resonant peaks measured for the powdered iron sample

To highlight the signal contributions from varied sources, a coil, inductance of 4.95 µH, 30

turns, 25 mm diameter and 100 mm length is placed next to a NdFeB N42 magnet. The magnetic

core is placed within the coil. The entire assembly, the coil, permanent magnet and magnetic

core is placed within a shielded aluminium box to minimize interference from external sources. A

powdered iron sample was used as the magnetic core for this experiment. A simple representation

of all the resonant peaks measured with this sample can be seen in Fig. 7.6.

Fig.7.7a, 7.7b clearly highlight the overlap between signals from the coil, magnet, magnetic core

and external noise. These may all be assumed to be resonances due to the magnetic core and since

Fig.7.7a, 7.7b show that there is an overlap of signals due to variations in the core’s magnetization

it is necessary to determine the contributing factor for each resonance.
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Figure 7.7: Signal amplitudes and linewidths for the inductive coil, biasing magnet and magnetic

core. The signal amplitudes and linewidths were estimated from the Fourier spectrum at each

resonance. Error bars are generated by averaging over 3 different repetitions.

7.3.3 Contributions from the measurement system

Figure 7.9: Representation of all resonant peaks highlighting peaks from measurement system

To determine the source of the signals from the measurement system, input signal and loading

effects, pulsed resonance measurements were conducted with a matched 50 Ω load and an inductive

load of inductance 4.95 µH, over the entire measurement frequency range. The pulse duration
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Figure 7.8: (a) Signal Amplitude Comparisons, Comparison of signal amplitudes due to a matched

resistive load and an inductive load, (b) Linewidth Comparisons, Comparisons of ringing parameters

for a matched resistive load and an inductive load (coil). The signal amplitudes and linewidths are

estimated from the Fourier spectrum of the measured signal.

and repetition rate were set to 200 µs and 500 ms respectively. Since these correspond to low

frequencies lesser than 0.1 MHz, it is understood that they cannot appear as resonant peaks in the

measurement. The self resonance of the coil was also measured using a network analyzer and was

found to be at frequencies (greater than 25 MHz) beyond the frequency range of interest. This

implies that self resonance of the coil cannot be observed in Fig. 7.7a. As in Fig.7.8a, 7.8b, certain

resonant frequencies with low signal amplitudes are identified when a matched resistive load is

connected to the system. Fig. 7.8a, 7.8b show that some of these resonant peaks also repeat when

the inductive load is connected to the system. This implies that these resonances are occurring due

to the measurement system itself. From Fig.7.8a, 7.8b, while the signal amplitudes are comparable

at the overlapping resonant peaks, the linewidth of one of the resonant peaks (530 kHz) decreased

with inductive loading as observed in Fig.7.8b. This implies that signals originating from the system

will take a longer time to decay at a frequency of 530 kHz, which is undesirable. It is important to

note that other resonant peaks have low amplitudes and linewidths, as seen in Fig.7.8a, and can be

considered in further measurements as noise. Fig. 7.9, summarizes the presence of the peaks due to
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the measurement system and the peak due to the interaction of the inductor with the measurement

system. These are considered as undesirable effects in our measurements.

7.3.4 Contributions from the external permanent magnet

A NdFeB N42 magnet was used to create a single-sided external biasing field. All the pulsed

field measurements were repeated in the presence of this magnet. New resonant peaks, besides

the resonant frequencies of the system as observed in Fig. 7.7a are observed in Fig. 7.10a. These

resonant peaks are considered to originate due to surface currents induced in the magnet and

changes in the effective magnetic field around the coil. The surface currents occur when the pulsed

field is applied to the conductive surface of the magnet. The surface (eddy) currents are also

considered to be a source of mechanical vibrations for the magnet. Then the modes induced in the

magnet can be calculated using equation 7.4. Due to the nature of our experiment, the vibrations

due to the magnet are also recorded by the pick-up coil. Measurement results show that multiple

modes and harmonics are induced in the magnet itself. A comparison of the calculated and measured

harmonic modes for the magnet may be found in Table 7.1. It was observed that only higher order

modes can be observed since the frequency of operation is from 0.1 to 1.4 MHz. The peaks caused

due to the magnet’s vibrations are also present when the magnetic core is placed within the coil.

From Fig. 7.10a as expected, it is observed that the resonant peak signal amplitudes increase in

the presence of the magnet. Meanwhile the linewidths depict minimal variations in presence or

absence of the magnet as in Fig. 7.10b. A summary of the calculated and measured resonances

due to the vibrational modes for the magnet and the peaks due to the measurement system are

observed in Fig. 7.11.

Table 7.1: Vibrational modes induced in the magnetic core and magnet

Material E ρ l fcalculated Harmonic number

GPa kg/m3 m kHz n

Core 140 7000 0.094 24 6,7,8,13,14,17

Magnet 160 7500 0.1016 11 9,10,15,17,20
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Figure 7.10: (a) Peak Signal Amplitudes,Comparison of signal amplitudes due to coil and magnet

(b) Linewidths, Comparison of signal amplitudes and linewidths due to both the coil and magnet.

7.3.5 Magneto-mechanical and core material contributions

Besides vibration modes in the magnet, mechanical vibrations are also induced in the magnetic

core material as observed in Table 7.1. In our experiment, there were peaks at specific resonant

frequencies that could not be accounted for by either mechanical or system contributions. These

peaks are considered to arise due to magneto-mechanical effects induced in the magnetic core.

Fig.7.12a and 7.12b depict these resonant peaks after eliminating peaks caused due to the magnet

and the system. In our experiment, these peaks are considered to originate due to intrinsic material

properties of the magnetic cores. In some cases, due to the variability of the static magnetic field,

some of the peaks may also appear to have shifted from expected frequencies. At the same time,

addition of the magnetic core to the inductive coil changes the inductance to 18.67 µH. It is expected

that the electrical resonant frequency for the inductive load would shift to a lower frequency with

an increase in inductance. A summary of the peaks due to the mechanical oscillations for the

magnetic core may be observed in Fig. 7.13.
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Figure 7.11: Representation of all resonant peaks highlighting peaks from magnet
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Figure 7.12: (a) Peak Signal Amplitudes, Comparison of linewidths due to coil, magnet and mag-

netic core (b) Linewidths, Comparison of signal parameters due to coil, magnet and magnetic

core. The peaks from the measurement system and due to the magnet are eliminated in the core

measurements in these graphs.

Based on the pulsed resonance measurements, it can be confirmed that different resonant peaks

originate from different sources. While the peaks from the measurement system and the magnet

may be easily decoupled, identifying peaks due to the magnetic core requires further analysis. In

particular, if some peaks due to the magnetic core overlap with the peaks due to the system/magnet
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they are not easily identifiable as separate peaks. At the same time, due to the variability in

external magnetic field, all the vibrational modes may not be energized equally thus leading to

various resonant peaks across the spectrum.

Figure 7.13: Representation of all resonant peaks highlighting peaks from magnetic core

7.4 Temperature dependent measurements

The magnetic sensors used in oil well logging applications also operate under conditions of

high temperature and pressure. The sensors are placed within drilling tools and operated under

continuous mechanical vibrations, low-biasing fields and elevated temperatures of upto 473 K [136].

In such harsh environments, acquiring reliable data requires improvements in signal to noise ratio

(SNR) and this necessitates the use of high permeability magnetic cores within the sensors. The

response of the magnetic cores used within these sensors is also dependent on their operating

temperature. Magnetic materials can become paramagnetic above Curie temperature, and can also

exhibit non-linearities at elevated temperatures [137, 138].

In this work, the effect of temperature on signals acquired from an inductive sensor with different

magnetic cores was studied [139]. While the Curie transition temperature for the magnetic cores

used in this study is higher than 473 K, high temperatures cause changes in magnetization [98]

and thus variations in the measured signals. Measurements were taken over a frequency range of

0.1 - 1.4 MHz with different temperatures. The signals were acquired in the time domain and the



www.manaraa.com

109

frequency spectrum is calculated. Resonant signal amplitudes as well as resonant peak linewidths

were recorded across the indicated frequency range.

7.4.1 Experimental Setup

Figure 7.14: Schematic of measurement system. Pulsed sinusoid is generated by the pulse generator,

amplified and applied to the inductive coil. The pulse response is then rerouted via the duplexer

and the preamplifier.

A schematic representation of the experimental setup is shown in Fig. 7.14. A Kea system that

can generate a pulsed sinusoidal at a maximum power of 1 mW was used as the pulse generator.

The power amplifier increased the input signal to a maximum level of 4 kW. A 30 turn inductive

coil, with 25 mm diameter and 100 mm length was placed 20 mm away from a biasing magnetic

field from a SmCo magnet. The SmCo magnet was selected instead of NdFeB due to its capability

to withstand higher operational temperatures. The magnetic core was placed within an inductive

coil that was mounted onto a glass tube. The entire assembly (the inductive coil and the magnet)
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was placed within a shielded aluminum box and then placed within the oven chamber where the

sample could be heated up to a maximum of 473 K. For this study, the ringing properties were

measured with temperature variations from 300 - 400 K.

7.4.2 Ringing Measurements

7.4.2.1 Signal Amplitude Variations

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

Frequency,kHz

A
m

p
li

tu
d

e,
 u

V

 

 
300 K

325 K

350 K

375 K

400 K

(a) Signal Amplitudes for Mu55

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Frequency, kHz

lo
g

(A
m

p
li

tu
d

e)
, 

u
V

 

 
300 K

325 K

350 K

375 K

400 K

(b) Signal Amplitudes for Mu1200

Figure 7.15: (a) Variations in peak signal amplitude for MU55. Temperature is varied from 300 -

400 K (b) Variations in peak signal amplitude for MU1200. Temperature is varied from 300 - 400

K. A log scale was used for improved readability.

Two samples, a low permeability powdered alloy (Mu55) and a high permeability ferrite (Mu1200)

sample were tested with variations in external temperature. From Fig.7.15a and 7.15b, it was ob-

served that with increasing thermal activity, there was a reduction in the number of resonant peaks

for both samples. For Mu55, there is no significant variability in the measured signal amplitudes.

This implies that Mu55 was stable under thermal variations. Meanwhile, Fig. 7.15b depicts the

signal amplitude variations for Mu1200. Here, similar to Mu55, it was observed that with an in-

crease in temperature, the number of resonant peaks decreased and at the same time the signal

amplitudes were also lower at higher frequencies. This contrasting characteristic of the low and
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high permeability material implies that with thermal activation, the low permeability powdered

alloy allows for higher interaction between the magnetic domains [98] and insignificant variations to

the signal amplitude. At the same time, Mu1200, is affected by temperature variations and depicts

a decrease in the number of resonant peaks and peak amplitudes.

7.4.2.2 Linewidth Variations
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Figure 7.16: Comparison of linewidths for (a) Mu 55 and (b) Mu 1200 with variations in temperature

To minimize the contributions of ringing, it was also expected that the resonant peaks introduced

due to the magnetic core decay faster. This implies that the linewidth at each resonant peak should

be wide. From Fig. 7.16a, it is observed that for Mu55, the signal linewidth is uniformly narrow

over all signal frequencies indicating that the signals take longer to decay. At the same time Fig.

7.16b shows that Mu1200 has a wider linewidth at higher frequencies. The linewidth remains

uniform across all measurement temperatures.

Overall, ringing measurements indicate that at elevated temperatures, a large number of reso-

nant peaks disappear for both Mu55 and Mu1200. For Mu55, besides the decrease in the number

of resonances, there is hardly any variation in the signal decay rate and peak amplitudes remain

consistent for lower temperature measurements. For the ferrite material, Mu1200, the observed
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number of resonant peaks also decreased with an increase in temperature and the signal decay is

high only at higher frequencies. Ultimately, for the application of oil well-logging, it is necessary

to obtain a magnetic core material which has the lowest number of resonances, lowest peak signal

amplitude variation with temperature changes and larger linewidth (shorter signal decay time) at

high temperatures. In summary, variations in material characteristics are equally important in

determining the number and nature of resonances. Mu55 which is a powdered alloy had low signal

amplitude, large decay time and fewer resonant peaks with increase in temperature. Mu1200 which

is a spinel ferrite had a high signal amplitude at low frequencies, high decay time at low frequencies

and a lower number of resonant peaks with increase in the external temperature.

7.4.3 Magnetic Measurements

(a) Mu55 Saturation Magnetization
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Figure 7.17: Variations in saturation magnetization with increase in temperature for (a) Mu 55

and (b) Mu 1200

Magnetic hysteresis measurements allow us to determine the variations in magnetization char-

acteristics with temperature. Fig. 7.17a depicts the change in magnetization at 2.4 kA/m for

Mu 55 with temperature elevation. It is observed that the magnetization slightly decreases with

increase in temperature and plateaus after about 375 K. As seen in Fig. 7.17b, the magnetization
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for Mu 1200 behaves similar to Mu 55. The saturation decreases rapidly with increase in temper-

ature. This indicates that the ferrite has not saturated completely at 400 K at a maximum field

of 2.4 kA/m. In summary, the magnetic hysteresis measurements show that with an increase in

temperature, magnetic materials can be magnetized with ease and this relates to a decrease in the

number of resonant peaks and correspondingly lower signal amplitudes.

7.5 Conclusions

A new method to identify and quantify the response of the magnetic core material for a magnetic

resonance sensor over multiple frequencies has been established. On the basis of the parameters of

interest i.e. signal amplitude and linewidth at each resonant frequency Mu 125 is identified as the

most suitable magnetic core for oil-field well logging tools investigated. Even though Mu 225 has a

lower signal amplitude in contrast to Mu 125 it has a higher linewidth over the measured frequency

regime, especially in the lower frequency range. Meanwhile, Mu 1200 has a higher linewidth in

the high frequency range and may be considered if the signal amplitude, linewidth and number of

resonances are controlled by variations in material properties.

Additionally, the peaks introduced due to the mechanical oscillations in the magnet, due to

the measurement system and due to the magnetic core can be distinguished. It is understood that

with variations in the magnet, magnetic field strength and magnetic core, the resonant peaks will

shift in frequency but will still be present and will respond in the same way. It is also necessary to

highlight that multiple resonant peaks were not originating only due to the magnetic core. Thus,

creating a distinction is vital to determine the signals which are directly received from the magnetic

core material.

The interrelationship between ringing, magnetic properties of the sensor core and operating

temperature of the sensor has been presented. Based on measurements and observations made, it

was found that for the low permeability material the variations in signal amplitude and linewidth

are low and the magnetization reduces with an increase in temperature. For the high permeability



www.manaraa.com

114

material, the signal amplitudes decreased, the linewidths increased and the saturation magnetiza-

tion decreased with rise in temperature.

In summary, low permeability materials can be used for sensors that require minimal variations

in the magnetic core’s response with changes in temperature. The high permeability materials

with greater linewidth are preferred in higher frequency applications where the resonant peaks

must decay quickly and should not interfere with actual magnetic resonance measurements. At the

same time, the material composition can be used to determine if the ringing parameters would vary

with increase in temperature for different core compositions. Future work should include a study

of the ringing parameters with variations in the material composition.

7.6 Avenues for improvements

The measurement results indicate that the relationship between the number of resonances,

magnetic permeability and material composition need to be investigated further. Improvements

in material performance, i.e. lower signal amplitude and greater linewidth may be obtained by

controlling the particle sizes and in turn controlling the long-range domain level interactions of the

magnetic core material. Besides material properties the circuit, material and acoustic resonances

need to be decoupled from the responses due to the material. Further investigations are also

needed in determining the effects if any of magnetostriction on ringing in the frequency range

under consideration.

On the basis of this work, a method to identify peaks from multiple contributing sources is

established. While these peaks also depend on the measurement parameters, the contributions

due to the magnetic core need further investigation and analysis. Especially the effect of external

field variability on the frequency, signal amplitude and linewidth needs to be analyzed. Ability to

distinguish between different resonant peaks will be a vital resource for unilateral NMR sensors

users such as oil well logging engineers for better interpretation of the observations during NMR

examinations.
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CHAPTER 8. CONCLUSIONS

The ability to perform non-invasive studies on varied materials via portable mechanisms has

been an ongoing effort in the last few decades [57, 67, 102]. The nondestructive testing industry

has been manufacturing and using such devices for on-site and in-situ measurements [73]. However,

magnetic sensing with the purview of portable diagnostics for medical applications remains to be

an area with tremendous opportunities. The major challenges on this front remain the design and

development of low cost measurement systems which can detect signals in varying conditions. New

techniques and measurement mechanisms are thus required to facilitate developments for portable

data acquisition and processing. With this perspective, in this work, an approach towards design-

ing a portable magnetic resonance sensor was established. Different versions of portable magnetic

resonance sensors were tested. Sensor design elements were individually tested and sensor perfor-

mance was successfully evaluated for the application of oil well logging and portable diagnostics.

An overview of the design stages for prototyping a portable NMR sensor and measurement results

from a proof of concept prototype is presented in Appendix 10. At each design stage, the intent of

maximizing SNR, detection volume and detection distance were considered.

A major focus of this work was conceptualizing and developing a portable magnetic resonance

sensor, while identifying the associated challenges for realization of such designs. The design pro-

cess included selection and modeling of appropriate magnet geometries to produce static magnetic

fields, controlling pulse currents through inductors at the required switching rate and verifying

system operations on assembling the different units. The first challenge which was introduced in

making the system portable was operation at low field strengths. This caused a reduction in the

maximum operational frequency and thus led to a limited capability in distinguishing signals from

noise. Besides the low SNR, the non-uniformity of the static field also posed a limitation on the

measurement. Only smaller regions near the magnet surface could be detected. To overcome such
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effects of spatially varying static fields, ring magnet geometries were used to identify localized re-

gions with magnetic field stability in the magnet’s exterior. Various modifications to the magnet

geometries were successfully implemented and the design constraints for permanent magnets were

identified.

Additionally, the design and challenges of a portable pulsed magnetic field generator were

discussed. Obtaining high-frequency pulsed sinusoidal fields (both monophasic and biphasic) is a

challenge for most portable systems due to the slow current switching in inductors and limited

frequency tunability due to narrow bandwidths of tuned loads [140]. Moreover, in our portable

design, obtaining high currents with 50 % duty cycle limited the maximum operational frequency

of the designed circuit. Nonetheless, various pulsed field generator designs were simulated and

implemented, and successful operations, with both monophasic and biphasic pulses were executed

at frequencies upto 10 MHz.

Prior to this work, similar portable magnetic resonance sensors were limited to well logging

applications, nondestructive testing and portable imaging applications [86, 102, 141]. However, the

possibility of incorporating such sensors to medical diagnostics is affirmed via the measurements

made with the “proof of concept” device measurements presented, Appendix 10. Measurements for

ferromagnetic materials show that the non-uniform magnetization of the ferromagnetic materials

causes spurious signals to appear. However, measurements with organic media show that the

prototype system can be used for estimating concentrations of various species and even absorption

rates of magnetic species. Thus, such devices hold the promise for future diagnostic applications.

In conclusion, the design, testing and measurements performed within this research set a bench-

mark for explorations of unconventional methods for portable medical diagnostics. In general, this

work successfully demonstrates the operations of a portable magnetic resonance sensor and is a

significant contribution towards producing such devices for various applications.
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CHAPTER 9. MESSAGE TO FUTURE RESEARCHERS

As I reflect on the wide and interdisciplinary nature of this research work, my first message

to any researcher in this field is to not be overwhelmed with the immense diversity, but to enjoy

the beauty of the interconnections, this is how most future research is bound to be. The field of

magnetics and in general any applied research in the present day interweaves through several diverse

aspects. I believe and hope that researchers in different areas will select avenues of their interest,

embrace and push forward the research boundaries in their interest areas. To begin wondering

about the possible directions, I would first urge researchers to think ten years ahead of time, and

also envision the pace of technological development at that stage. While many researchers have

interesting ideas worth exploring, often the funds or technological development isn’t at the same

pace and some researchers face challenges in connecting abstract work to the realities of everyday

existence. I would encourage students and researchers alike to find the right fit, a match between

their aspirations, technology and the right people who can facilitate the transformation of dreams

to reality. In every aspect, a PhD work is a life-changing experience, a definition of one’s learning

and thought process and students embarking on this journey, should be ready to be deeply bothered

by questions only to forget solutions while forming new questions the following day.

Simplistically, it would be easy to inform the future researchers that everything that I was

unable to achieve would be a good direction to start with. However, a long-term vision would

define the path for future researchers much more meaningfully. When I was pursuing this research,

I was excited by wearable technology, sensors and wanted to see how medical diagnostics could

become more accessible for a common man. Ten years from now, this will be common place with

most technological advancements and other new questions on high-speed measurements will arise.

In the context of this work, the ability to predictably model the interactions between DC and

pulsed fields and estimate the effect on objects in the near and far-field would impact several
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fields of research in future years. While the quasi-static nature of the pulsed fields would pose a

challenge in predicting the momentary responses from varied materials, both linear and non-linear,

a steady-state solution could be used to obtain approximate estimates about spatial variations.

Further studies on impact of field non-uniformity would also affect the scalability and range of

measurements. 2D or 3D images in exterior of portable sensors may be obtained via meticulous

data acquisition and processing. A detailed evaluation of the non-uniformity of static fields can be

easily pursued via use of existing software packages.

In the scope of this research, the following areas would be of interest to researchers focusing on

devices or high-speed system interactions with magnetic phenomena. In order to make some or most

of these efforts meaningful, access to adequate simulation, testing and measurement capabilities

would be needed via collaborative ventures.

1. Design of magnet geometries to support multi-point measurements

While this work demonstrates that to obtain higher SNR and spatial resolution it is beneficial

to obtain NMR signals from a particular measurement location , multi-point measurements

would make the portable NMR system viable to various applications. As an initial effort,

researchers might consider detection along layers concentric to the magnet or for thin objects.

However, another approach might be to identify a modification of magnet geometries such as

previously used Halbach arrays or other assemblies. Moreover, magnetic shielding techniques

may be employed to focus the flux to specific regions of investigation.

2. Design of transmit and receive geometries to improve spatial data acquisition

Besides shaping the static field location and strength, the pulsed field also plays an important

role. Conventionally, many designs have used the same coil for transmit and receive due to the

excellent isolation between the two signals. However, use of multiple transmit and receive coils

provides the flexibility of spatial placement and sequential excitement as in phased arrays. The

main trade-off with use of multiple transmit coils would be higher power consumption though

a timing sequence could be used as a controlling mechanism. It would also be advantageous
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to focus the pulsed fields to specific detection regions of interest. Due to prior knowledge on

the spatial distribution of static field, the locations where the pulsed fields can be focused are

known.

3. Studies on near-field effects such as mutual coupling between transmit, receive

and sample

With the improvements in the coil-design, a major challenge lies in decoupling the transmitted

signal from the received signal. One way to do this might be to use a lock-in amplifier which

would operate at a particular reference frequency. Besides this, signal processing in the

frequency domain would give users an opportunity to locate signal obtained from varied

locations. While most of the signals are obtained at the transmitted frequency, signals from

other locations give users a hint about spatially locating other regions of interest. Lastly, due

to the proximity of the sample and measurement unit, there would be significant amount of

noise due to reflections, absorption and other lossy effects.

4. Design of a tunable wideband pulsed field generator with varied operational fre-

quencies

Since design of pulsed magnetic fields is considered a fundamental contribution of this work, it

would be beneficial to obtain frequency tunability over specific frequency ranges. This would

extend the detection region and potentially contribute to obtaining higher SNR. Due to

the availability of rapid prototyping facilities, design of varied pulsed field generators would

be an achievable task and would greatly enhance the foray of portable electronic systems

for magnetic resonance applications. Additionally, flexible control on the regions where the

maximum impact of the pulsed field needs to be achieved may occur with modifications and

improvements in coil design.

5. Design of noise cancellation or absorption mechanisms

A major challenge observed throughout this endeavor was separation of noise from the signals

of interest. For the NMR measurements, signal averaging, single frequency detection and
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repetitive measurements were used to eliminate different sources of noise. However, due to

the low static fields, higher operational frequencies can’t be used. Therefore, efforts need

to be made to either increase the signals from the samples or to eliminate noise to easily

distinguish signals from noise.

6. Design of pulse sequences with variations in sensor assembly

As with all NMR measurements, pulse sequencing methods will be created as per the demand

and requirement of the applications as well as the improvements in the hardware and software

capabilities. These modifications are subject to the materials under consideration.

The extent of the endeavor in this work is beyond the development of portable sensor sys-

tems for varied applications. This endeavor shows that with a team of researchers focused on the

development of electronics and magnetic sensors, the landscape of portable diagnostics can com-

pletely change in the next decade. The basic roadblocks and ways to overcome some of them are

discussed in the chapters of this document and hopefully assist future researchers in making mean-

ingful discoveries and inventions on their path to learning about magnetism, sensors and high-speed

electronics.
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CHAPTER 10. CONTRIBUTIONS

This chapter summarizes aspects of this dissertation which will contribute to developments

in the areas of magnetism and magnetic resonance sensors. Besides demonstrating methods of

acquiring magnetic resonance signals in non-uniform magnetic fields this work further highlights

the design considerations for each sub-unit which can be assembled to develop different magnetic

resonance detection systems as per the application requirements. Each contribution has resulted

in a publication in either the IEEE Transactions on Magnetics, Journal of Applied Physics or AIP

Advances. Key highlights from each chapter are described below.

Chapter 3, shows how permanent magnet geometries, specifically ring magnets, can be used to

measure signals a couple mm away from the sensor surface. Furthermore, the chapter shows how

larger stable field regions can be obtained by use of symmetrical dual ring magnet geometries.

Chapter 4, discusses the design of a portable pulsed field generator using an inductor connected

to a fast switching FET. The chapter discusses possible effects of variable duty cycle and switching

device on the generated pulsed magnetic fields or currents.

Chapter 5, describes an improved pulsed field generator design, eliminating the loading effects

between the switching and signal generation stage by introduction of an operational amplifier.

Additionally, the circuit described in this chapter can operate at a frequency of 5 MHz (or upto 10

MHz) and handle high pulsed currents.

Chapter 6 and 7, describe the experimental measurements for ferromagnetic materials in pres-

ence of non-uniform magnetic fields produced by permanent magnets. Such materials are used to

enhance captured signals in oil well logging tools and the chapters describe how signals obtained due

to non-uniform magnetization of the ferromagnetic material affect the operations of the described

tool.
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Appendix 10 summarizes the measurements performed using a commercial magnetic resonance

sensor on various organic media thus confirming the feasibility of magnetic resonance measurements

in non-uniform fields.

In summary, this work has succeeded in delivering the following aspects to the field of portable

sensor technologies.

1. Method to identify regions of localized field in the exterior of permanent magnet geometries

(Chapter 3) and methods to enhance the field strength at such locations

2. Design, implementation and testing of four different pulsed sinusoidal magnetic field genera-

tors (Chapters 4 and 5)

a. Pulsed field generator operable at a frequency of 2 MHz and allowing 0.5 A of current

through an inductor with different switches

b. Pulsed field generator operable at a frequency of 0.5 MHz with controlled current based

on the drain voltage

c. Monophasic pulsed field generator operable at a frequency of 5 MHz with upto 10 A of

current through an inductor

d. Design of a biphasic pulsed field generator operable at a frequency of 1 - 3 MHz with

upto 50 A of current through inductor

3. Design of various coil geometries that can be utilized for transmission and reception with

both the monophasic and biphasic field generators

4. Characterization measurements for both ferromagnetic and organic materials (Chapters 6, 7

and Appendix 10 )

5. Characterization of system operations using (Chapter 4, 5, 6, 7, 10 )

a. Commercially developed prototype sensor operable at a frequency of 6.7 MHz

b. Commercially developed system operable in a frequency range of 0.1 - 1.4 MHz
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c. Locally developed sub-systems comprising of permanent magnet assembly, pulsed field

generator, transmit and receive coils
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of ringing in the tuned input circuit of a SQUID detector used in low-field NMR measure-

ments,” Superconductor Science and Technology, vol. 22, no. 12, p. 125022, 2009.

[125] K. Takeda, Y. Tabuchi, M. Negoro, and M. Kitagawa, “Active compensation of rf-pulse

transients,” Journal of Magnetic Resonance, vol. 197, no. 2, pp. 242 – 244, 2009.

[126] T. Hopper, S. Mandal, D. Cory, M. Hürlimann, and Y.-Q. Song, “Low-frequency NMR with

a non-resonant circuit,” Journal of Magnetic Resonance, vol. 210, no. 1, pp. 69–74, 2011.

[127] L. B. Casabianca, D. Mohr, S. Mandal, Y.-Q. Song, and L. Frydman, “Chirped CPMG for

well-logging NMR applications,” Journal of Magnetic Resonance, vol. 242, pp. 197–202, 2014.

[128] G. Mamniashvili, Y. Sharimanov, T. Gegechkori, A. Akhalkatsi, T. Gavasheli, and

D. Gventsadze, “DIPED 2012: Proceedings: XVIIth International Seminar/Workshop on

Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, Tbilisi, Septem-

ber 24-27, 2012,” DIPED 2012: Proceedings, 2012.

[129] M. S. H. Akram, Y. Terada, I. Keiichiro, and K. Kose, “Coupled circuit numerical analysis of

eddy currents in an open MRI system,” Journal of Magnetic Resonance, vol. 245, pp. 1–11,

2014.

[130] N. Prabhu Gaunkar, N. R. Y. Bouda, I. C. Nlebedim, R. L. Hadimani, I. Bulu, K. Ganesan,

Y. Q. Song, M. Mina, and D. C. Jiles, “Analysis of ringing effects due to magnetic core



www.manaraa.com

140

materials in pulsed nuclear magnetic resonance circuits,” Journal of Applied Physics, vol.

117, no. 17, 2015.

[131] N. Prabhu Gaunkar, I. Bulu, Y. Song, M. Mina, and D. C. Jiles, “Detection and estimation of

magnetization induced resonances in unilateral nuclear magnetic resonance (nmr) sensors,”

AIP Advances, vol. 7, no. 5, p. 056634, 2017.

[132] K. M. Gilbert, L. Martyn Klassen, and R. S. Menon, “A low-cost, mechanically simple ap-

paratus for measuring eddy current-induced magnetic fields in mri,” NMR in Biomedicine,

vol. 26, no. 10, pp. 1285–1290, 2013.

[133] A. Reiderman, “Ultra-slim nuclear magnetic resonance tool for oil well logging,” Jan. 27 2014,

US Patent App. 14/164, 265.

[134] T. Phway and A. Moses, “Magnetisation-induced mechanical resonance in electrical steels,”

Journal of Magnetism and Magnetic Materials, vol. 316, no. 2, pp. 468–471, 2007.

[135] J.-I. Park, S. Lee, I. Yu, and Y. Seo, “Inductive detection of magnetostrictive resonance,”

Sensors and Actuators A: Physical, vol. 140, no. 1, pp. 84–88, 2007.

[136] T. Baird, T. Fields, R. Drummond, D. Mathison, B. Langseth, A. Martin, and L. Silip-

igno, “High-pressure, high-temperature well logging, perforating and testing,” Oilfield Review,

vol. 5, no. 2/3, pp. 15–32, 1993.

[137] S. Yoon and K. M. Krishnan, “Temperature dependence of magnetic anisotropy constant in

manganese ferrite nanoparticles at low temperature,” Journal of Applied Physics, vol. 109,

no. 7, p. 07B534, 2011.



www.manaraa.com

141

[138] K. Maaz, A. Mumtaz, S. Hasanain, and M. Bertino, “Temperature dependent coercivity and

magnetization of nickel ferrite nanoparticles,” Journal of Magnetism and Magnetic Materials,

vol. 322, no. 15, pp. 2199–2202, 2010.

[139] N. Prabhu Gaunkar, I. Nlebedim, I. Bulu, M. Mina, R. Hadimani, Y. Song, and D. Jiles,

“Broadband analysis of response from magnetic cores used in inductive sensors for pulsed

nuclear magnetic resonance applications,” IEEE Transactions on Magnetics, vol. 52, no. 7,

p. 2800404, 2016.

[140] T. Hopper, S. Mandal, D. Cory, M. Hürlimann, and Y.-Q. Song, “Low-frequency nmr with a

non-resonant circuit,” Journal of Magnetic Resonance, vol. 210, no. 1, pp. 69–74, 2011.

[141] C. Hugon, G. Aubert, and D. Sakellariou, “An expansion of the field modulus suitable for the

description of strong field gradients in axisymmetric magnetic fields: Application to single-

sided magnet design, field mapping and strafi,” Journal of Magnetic Resonance, vol. 214, pp.

124–134, 2012.

[142] D. Fabri, M. A. Williams, and T. K. Halstead, “Water t2 relaxation in sugar solutions,”

Carbohydrate Research, vol. 340, no. 5, pp. 889 – 905, 2005, conformations of Oligo- and

Poly-saccharides.

[143] G. Coates, L. Xiao, and M. Prammer, “Nmr logging: Principles and applications (halliburton

energy services, houston, 1999),” Google Scholar, pp. 1–234, 1999.

[144] J. F. Jansen, M. J. Shamblott, P. C. Van Zijl, K. K. Lehtimäki, J. W. Bulte, J. D. Gearhart,
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APPENDIX MEASUREMENTS ON ORGANIC MATERIALS AND CELLS

This chapter discusses measurements on organic media using a commercially developed portable

magnetic resonance sensor. In chapter 7, we have discussed the response of ferromagnets to mag-

netic resonance signals. In this chapter, we present studies of materials which are not strongly

ferromagnetic but can be magnetized in the presence of external applied fields (paramagnets).

The measurements were performed using a portable NMR system developed by Schlumberger-Doll

Research.

Figure A.1: Measurement system used: Kea2 NMR spectrometer
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Figure A.2: Permanent magnet sensor. The metal casing encloses 4 permanent magnets (Total

height: 0.03 m) and the top surface is the D-coil.

Figure A.3: Magnetic field measured perpendicular to the permanent magnet sensor

The designed system comprised three units, a Kea 2 pulse generation and detection system

Fig. A.1 tuned to operate in a frequency range of 5-10 MHz, a portable permanent magnet sensor
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comprising of a 0.05 m (outer diameter) x 0.03 m (height) NdFeB ring magnet and a planar double

D-shaped coil which was designed to operate at a resonant frequency of 6.7 MHz, both seen in Fig.

A.2. The designed sensor has a 10 mm x 10 mm x 10 mm region of sensitivity right above the

magnet surface. Therefore, samples can be placed directly on top of the sensor for measurements.

The magnetic flux at the exterior of the magnet is shown in Fig. A.3.

From figure A.3, it is seen that a maximum flux density of 0.163 T is obtained up to approx-

imately 10 mm above the magnet surface. For measuring proton NMR, this flux density would

correspond to a resonant frequency of 6.85 MHz, however, environmental factors such as temper-

ature and humidity affect the sensor’s operation. To study magnetic resonance, a pulsed field is

repeatedly applied to the test samples via the D-shaped coil. The Kea2 system has an internal

amplifier which may be tuned to operate upto a maximum power level of 100 W. A variety of

pulse sequences can be generated using the Kea2 system. Due to the non-uniform field decay in

the exterior of the magnet, a CPMG pulse sequence as described in chapter 2 was used for all

measurements. The 1H spin-spin relaxation time, T2 and T ∗2 decay times are used as metrics to dis-

tinguish between different interactions that exist between paramagnetic species. Two studies were

performed using this experimental setup and preliminary findings are described in the following

sections.

Examination of sugar solutions

In the initial measurements with this sensor, along with our collaborators we wanted to under-

stand the application space where such sensors could be used. Since the sensor was designed to

measure near-surface effects, one choice of biologically relevant experiment was to look into detec-

tion of sugar content in human blood, specifically for diabetes detection devices. In order to mimic

sugar content in human blood, three different sugar solutions were prepared. The samples chosen

were cane sugar, brown sugar and glucose tablets dissolved in water, each with varying weight

percentages. Since the response of hemoglobin to an external magnetic field is very weak, these

sugar solutions were considered to be a good first approximation of actual human blood samples.
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The sugar samples were prepared by weight percentage with a variation from 1 % - 30 % sugar

in solution. 1H spin-spin relaxation time or T2 is estimated via Carr-Purcell-Meiboom-Gill (CPMG)

measurements for the sugar solutions. As described in prior work [142], the spin-spin relaxation

rate is enhanced for solutions containing carbohydrates and proteins. Therefore, the relaxation rate

can be used to indirectly monitor the characteristics of the solute.

Sensor Calibration

To verify the sensor operation, the sensor parameters were first optimized by measuring the

response of two water samples, Deionized (DI) water and DI water doped with Nickel chloride.

The doped sample was selected since the availability of different ions lead to a faster signal decay

time. An operational frequency of 6.7 MHz was selected based on the design of the permanent

magnet sensor. The output power level was fixed at -6 dB for the 90o pulse and -3 dB for the

180o pulse. Using these settings a pulse duration sweep was performed to identify the optimal

pulse width for a 90o rotation. The pulse duration sweep yielded an operational pulse width of

20 µseconds. The user has a flexibility of choosing the signal power level, operational frequency

and pulse duration and can run sweeps on each of these such that an optimal set of parameters is

used for measurements. If a non-optimal operational frequency is used, the user will not be able to

detect desired NMR signals and most of the measurements will be dominated by noise. A summary

of the measurement parameters used for sugar solution measurements is seen in Table. A.1.

Table A.1: Measurement parameters used for DI water and sugar solution measurements

Parameter Value Parameter Value

Frequency 6.7 MHz Pulse Width 20 µs

Inter-expt time 5 s Echo time 200 µs

Number of Echoes 4096 Dummy Echoes 2

Pulse Amplitude (90) -6 dB Pulse Amplitude (180) -3 dB

Complex Points 32 Dwell Time 0.5 µs

For the calibration measurements, the test on DI water yielded a T2 decay time of 1 - 2 seconds

and the DI water doped with Nickel chloride yielded a decay time of 500 milliseconds. These are in
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the expected decay ranges as per prior literature [92] confirming that the system is sufficiently op-

timized and calibrated. As seen in equation A.1, the decay time is considered to be a combination

of three different effects [143] arising from the bulk solution processes, surface relaxation effects

and diffusion in the presence of magnetic field gradients. Each of these effects occur simultane-

ously. Therefore, assuming the surface decay time to be infinite, the T2 decay time would include

contributions from two sources, namely the bulk media and the diffusion effects.

1

T2
=

1

T2,bulk
+

1

T2,surface
+

1

T2,diffusion
(A.1)

The diffusion induced relaxation, defined in [143],

1

T2,diffusion
=
D(γGTe)

2

12
(A.2)

occurs when a CPMG sequence is applied to materials impacted by magnetic field gradients. More-

over, with extensive field gradients, molecular diffusion contributes to an increase in T2 relaxation

rate [143]. The phenomenon of diffusion does not affect the longitudinal relaxation time T1. In the

equation above, D corresponds to the molecular diffusion coefficient, γ is the gyromagnetic ratio

for the proton, G is the field-strength gradient (gauss/cm) and Te is the inter-echo spacing used in

the CPMG sequence. We see that the diffusion relaxation rate will be directly affected by the echo

time and the magnetic field gradients. Fig. A.4 plots this and shows that with an increase in echo

time, the T2 decay time decreases. This means that the diffusion effects can be better understood

by increasing Te.

Figure A.4: Effect of echo length on T2 decay rates
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Lastly, it is important to note that if more than one solute interacts with the protons in solution,

multiple T2 decay times can be observed.

Measurements of sugar solutions

As described in literature [142], the presence and interactions of hydroxyl groups with protons

can be studied via proton NMR relaxation measurements. In our study, the T2 decay time for three

different sugar solutions, cane sugar, brown sugar and glucose was examined. A bi-exponential

fit was used to identify the decay time from the bulk and the diffusion effects respectively. The

self-diffusion process of water is assumed to be sufficiently rapid and doesn’t affect the decay rate

for the proton-hydroxyl interaction.

Since the decay rate is considered to be a combination of internal intrinsic effects and the effect

of field gradients and concentration, either term may dominate based on the nature of the solute

and interactions between solute and protons in solvent. Generally, bulk decay time is much longer

than diffusion induced decay. Here, in Fig. A.5, the variation of decay time for sugar solutions is

compared to the calibration sample DI water. It is observed that for all the sugar solutions, T2

decreases with an increase in sugar concentration. It is noteworthy that the diffusion coefficient is

also considered to depend on the sugar concentration. Therefore, besides the bulk decay time, the

diffusion decay time is also altered by changes in concentration.

(a) T2 for cane sugar (b) T2 for brown sugar (c) T2 for glucose

Figure A.5: T2 for different types of sugar solutions in comparison to deionized water
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Due to the multi-exponential nature of the T2 decay, the distribution of decays may be described

as in [143],

M(t) = ΣM(0)e
− t
T2i (A.3)

where, M(0) corresponds to the initial magnetization from the ith component of relaxation. Then,

for the bi-exponential decay, the magnetization, M(t) may be described by,

M(t) = Mbulk(0)e
− t
T2,bulk +Mdiffusion(0)e

− t
T2,diffusion (A.4)

As seen in Fig. A.6, the decay rates for 1.6 % sugar solutions are consistently around 1 second.

However, the decay rate for glucose is slightly higher than for sugar solutions. Meanwhile, as

observed in Fig. A.7, the decay rates for all the sugar solutions decrease with an increase in

concentration. Moreover, the glucose solution shows a large reduction in decay rate with an increase

in glucose concentration.

(a) 1.6 % decay time (b) Decay term coefficient

Figure A.6: Comparison of 1.6 weight % solution characteristics
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(a) 30 % decay time (b) Decay term coefficient

Figure A.7: Comparison of 30 weight % solution characteristics

Figure A.8: Comparison of decay rates for glucose solutions

Measurements for 30 % solutions, Fig. A.7, prompted us to further examine the behavior of T2

decay for glucose solutions with a variation in glucose concentration. As observed in Fig. A.8, with

an increase in concentration from 10% to 30 %, the decay time decreased by a factor of half. The

change in decay time was insignificant between a 1.6% and a 10% solution. To verify the range of

decay times for glucose, the decay characteristics of a comparable sugar, maltose [142] were used.

Using a diffusion coefficient of 2.34e−9 m2/s for water and the measured T2 decay times as 0.2 s

and 0.8 s respectively, the magnetic field gradients were estimated to be 0.73 T/m and 1.49 T/m.

Correspondingly, using a diffusion coefficient of 0.48e−9 m2/s for maltose, the effect of diffusion
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on the measured T2 decay time for glucose was estimated. As per Table. A.2, the decay rates for

glucose and maltose were comparable, thus validating our experimental measurements.

Table A.2: Comparison of T2 decay time for glucose (experimental) and maltose (theoretical [142])

solutions

Weight(%) T2 (Theoretical) T2 (For G = 0.73) T2 (For G = 1.49) T2

10% 0.1 s 0.1 s 0.1 s 0.2 s, 1.2 s

20% 0.8 s 0.7 s 0.5 s 0.2 s, 0.8 s

All the above experimental measurements suggest that the T2 decay rate may be used as a

valuable parameter for measurements of glucose levels in solutions or even in human blood, thereby

serving as a completely non-invasive technique of recording onset of diabetes in humans. Further

trials and studies on blood samples will be needed to validate these preliminary observations.

However, such measurements are beyond the intended scope of this research.

Examination of stem cells

Stem cells are defined as undifferentiated cells that go on to form various cells which form

the human body. These cells are capable of self-renewal [144] and thus have the potential to

be extremely valuable in regenerative medicine. Researchers in areas such as tissue engineering

are continually seeking new techniques to tackle the issues of cell regeneration and drug delivery.

Furthermore, researchers are examining ways of studying cell absorption rates for different drugs.

The portable NMR tool can serve as a tool for studying cell absorption rates. As a first test of this

system we examine the absorption rate of iron particles in stem cells extracted from rats. While

this is a preliminary study, it is expected that the results from this study would enable researchers

to study different phenomena at the cellular level using portable NMR sensors.

To study the uptake of particles within stem cells, magnetic resonance experiments were per-

formed using the portable NMR measurement system from Schlumberger Research. The stem cells

were prepared by researchers at the Nanovaccine Institute at Iowa State University. The cells were

placed within an incubator maintained at 36 oC with 5% carbon dioxide environment. The sample
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of interest was placed in a petri dish atop the permanent magnet sensor as in Fig. A.9. The

measurement parameters as in Table. A.3, were calibrated with respect to the cell culture media

and also with cells without any iron particles. Frequency, amplitude and pulse width sweeps were

performed to obtain optimal measurement parameters. These parameters are summarized in Table.

A.3.

Figure A.9: Stem cell samples placed on permanent magnet sensor

Table A.3: Measurement parameters used for stem cell measurements

Parameter Value Parameter Value

Frequency 6.71 MHz Pulse Width 18.5 µs

Inter-expt time 5 s Echo time 200 µs

Number of Echoes 4096 Dummy Echoes 3 - 5

Pulse Amplitude (90) -10 dB Pulse Amplitude (180) -5 dB

Complex Points 32 Dwell Time 0.5 µs

Number of Scans 64 Receiver Gain 40 dB

Similar to the measurements with sugar solutions, two decay rates were assumed, one associated

with the bulk material and the other due to diffusion processes. Our study was based on determining

if either of these decay rates were affected during the uptake of iron within the cells. Initially, the

cell culture media and the stem cells were measured without addition of any iron particles. From

Fig. A.10, it is observed that the addition of the stem cells in cell culture media affected the T2
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duration by 20%. However, on addition of the iron particles, as plotted in Fig. A.11 , the T2

duration initially doubled and then reduced once again by 25% of the original stem cell decay rate.

(a) T2 decay (b) Decay term coefficient

Figure A.10: Comparison of cell culture media and stem cells

(a) T2 decay (b) Decay term coefficient

Figure A.11: T2 during iron particle absorption process

The iron particle absorption process was studied systematically with a 30 minute interval be-

tween each measurement. The sample was placed on the permanent magnet sensor in the interim

duration. The researcher’s expected that the entire particle absorption process would require ap-

proximately 4 hours. Fig. A.11a, shows that after the initial 2 hour time point, the T2 duration

remained constant across all further measurements. Finally, a comparison of the T2 duration for the
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cell culture media and stem cells with or without iron was conducted, Fig. A.12 shows a reduction

of T2 on addition of iron particles to the cells and media.

(a) T2 decay (b) Decay term coefficient

Figure A.12: Comparison of cell culture media and stem cells

Overall, the observations from Fig. A.11, imply that the iron particle absorption process may

occur within a duration of 2 hours and this may be detected via T2 measurements. While this is a

preliminary result, it suggests the utility of the sensor beyond its intended application for oil wells or

non-invasive inspections. Further studies may be performed to study the cellular diffusion processes

as well as other secondary interactions which might occur during the particle absorption process.

One must note that certain basic precautions need to be taken while performing these experiments,

while handling the cells and also need to assure that the static field from the permanent magnet

doesn’t magnetically saturate the particles under investigation.

Future work

The initial measurements demonstrated in this chapter show the breadth of applications where

NMR sensors may be used. While our interest was maintained within the realm of biological

and organic matter, the applications of the sensor depend on the user’s capability of connecting

the measured parameters to the phenomenon under investigation. Our preliminary measurements
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demonstrate the applicability of such portable magnetic resonance sensors for non-invasive NMR

detection for future medical diagnostics and other portable magnetic resonance applications.
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